BSc DEGREE (CBCS) EXAMINATION, FEBRUARY 2020

Fifth Semester

Core Course - PH5CRT06 - CLASSICAL AND QUANTUM MECHANICS
B.Sc Physics Model I ,B.Sc Physics Model II Applied Electronics ,B.Sc Physics Model II Computer

Applications,B.Sc Physics Model III Electronic Equipment Maintenance
2017 Admission Onwards
69D28116
Time: 3 Hours
Maximum Marks :60

Part A

Answer any ten questions.
Each question carries 1 mark.

1. What is virtual displacement?
2. Write the Lagrange's equation of motion for non-conservative system.
3. Write down the Hamilton's canonical equations of motion.
4. Write down one advantage of using Hamiltonian formulism.
5. What is photoelectric effect?
6. What is a wave packet?
7. Find the eigen functions of the operator d / dx if its eigen value is 5 .
8. Define Hermitian operator.
9. Write down down the expression for the expectation of the of an observable A.
10. Write down the three-dimensional time dependent Schrödinger equation for a particle moving in a potential.
11. Write down the equations of Ehrenfest theorem.
12. Explain the requirements that are imposed on a physically acceptable wave function.

Part B

Answer any six questions.

Each question carries 5 marks.

13. Determine the degrees of freedom for a) Five particle moving in a plane. b) Two particles moving in a plane connected by a rod. c) A freely moving rigid body in three dimensional space.
14. Why is it necessary to use generalized coordinates in Lagrangian Mechanics?
15. Write down the Hamiltonian for a linear harmonic oscillator and deduce its equations of motion.
16. Prove that Wien's law is the high frequency approximation of Planck's law.
17. A gamma ray photon of energy 0.9 MeV is scattered through 120 deg by a free electron. Determine the energy of the scattered photon.
18. Find the de Broglie wave length of a 15 KeV electron.
19. Compare the uncertainties in the velocities of an electron and proton confined in a 1 nm box?
20. Find the lowest energy of an electron confined to a one-dimensional box of length $3 \mathrm{~A}^{\circ}$.
21. Write down the orthogonality condition for eigenfunctions.

Part C

Answer any two questions.
Each question carries 10 marks.
22. Obtain the Lagrange's equation of motion from Hamilton's principle.
23. Explain de Broglie hypothesis. Discuss the Davisson-Germer experiment of electron diffraction.
24. Discuss the fundamental postulates of quantum mechanics.
25. Explain the probability interpretation of wave function. List the necessary conditions for a physically meaningful wave function. Obtain the equation of continuity.

