

QP CODE: 21102903

 Reg No
 :

 Name
 :

B.Sc DEGREE (CBCS) EXAMINATIONS, OCTOBER 2021

Fourth Semester

Complementary Course - ST4CMT04 - STATISTICS - STATISTICAL INFERENCE

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Physics Model I)

2019 Admission only

69641B5C

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries **2** marks.

- 1. What do you mean by interval estimation?
- 2. Define unbiasedness.
- 3. Define sufficiency of an estimate.
- 4. How can we estimate the parameters using the method of moments?
- 5. What is the method of minimum variance?
- 6. Obtain interval estimate of the mean of Normal population if S.D σ is unknown.
- 7. Obtain the confidence interval for the variance of Normal population.
- 8. What do you mean by a statistical hypothesis?
- 9. Define significance level and power of a test.
- 10. State Neyman Pearson theorem in testing of statistical hypothesis.
- 11. Write the test statistic for testing the mean of a population in large sample test when the population SD (1) σ is known (2) σ is unknown.
- 12. Give the test statistic in the case of small sample test to test whether the mean of a normal population has a specified value, (1) when population SD is known (2) when population SD is unknown.

(10×2=20)

Turn Over

Part B

Answer any six questions.

Each question carries **5** marks.

- 13. Show by an example of a case where the estimate is not unbiased but consistent.
- 14. x_1, x_2, x_3 are three independent observations from a population with mean μ and variance σ^2 . If $t_1 = x_1 + x_2 x_3$ and $t_2 = 2x_1 + 3x_2 4x_3$, compare the efficiencies of t_1 and t_2 .
- 15. 1, 5, 2, 4 is a sample from a population with pdf $f(x) = p (1-p)^x$; 0 , <math>x = 0, 1, 2, ...Fnd mle of p.
- 16. A random sample of size n is taken from a Normal population with mean 0 and variance σ^2 . Examine whether $\frac{1}{n} \sum_{i=1}^{n} x_i^2$ is a minimum variance unbiased estimate of σ^2 .
- 17. The average height of 10 students who have interest in playing basket ball is 70 inches with a SD of 2.5 inches while 15 students who have no interest in playing basket ball had a mean height of 67 inches with a SD of 2.8 inches. Find 95% confidence interval for the difference of means.
- 18. The continuous random variable X has the density function $f(x) = \frac{1}{\theta}$; $0 \le x \le \theta$. It is desired to test the hypothesis H₀: θ = 1 against H₁: θ = 2 using a single observation x. Obtain the probabilities for type 1 and type 2 errors if we choose (1) $0.5 \le x$ (2) $1 \le x \le 1.5$ as the critical regions.
- 19. A sample of 200 boys who passed S.S.L.C examination is found to have mean mark 50 with SD 5 for English. The mean mark of 100 girls was found to be 48 with SD 4 for English. Does this indicate any significant difference between the abilities of boys and girls assuming the SD's the same.($\alpha = 0.05$)
- 20. A farmer grows crops on two fields A and B. On A, he puts Rs. 100 worth of manure per acre and on B, he puts Rs. 200 worth of manure per acre. The yields per acre for 5 years is given below. Examine whether costly manure has resulted in increased yields.

year	1	2	3	4	5
yield from A	34	28	42	37	44
yield from B	36	33	48	38	50

The standard deviation of a sample of 15 from a normal population was found to be 7.
 Examine whether the hypothesis that the standard deviation is more than 7.6 is acceptable.

(6×5=30)

Answer any **two** questions. Each question carries **15** marks.

- 22. (1) State Neyman's condition for sufficiency
 (2) Show that if σ² is known, sample mean x̄ is a sufficient estimate of μ and if μ is known, then sample variance s² is not a sufficient estimate of σ² in the case of samples from N(μ,σ).
- 23. (1) Derive the confidence interval for the proportion of a binomial population
 (2) Out of 250 insects treated with a certain insecticide, 150 were killed. Obtain 99% and 95% confidence intervals for the proportion of insects likely to be killed by this insecticide in future use.
- 24. Survey of 320 families with 5 children each revealed the following distribution. Is the result consistent with the hypothesis that male and female births are equally probable.

no. of boys	0	1	2	3	4	5
no. of girls	5	4	3	2	1	0
no. of families	12	40	88	110	56	14

25. (a) How do you test for the equality of variances of two normal populations.
(b) The time taken by workers in performing a job by Method 1 and Method 2 are as follows. Method 1 gives 20, 16, 26, 25, 23. Method 2 gives 28, 33, 42, 35, 52, 34. Do the data show that the variances of time distribution by the two methods do not differ significantly.

(2×15=30)