M.Sc. DEGREE (C.S.S.) EXAMINATION, APRIL 2019
 Fourth Semester

Faculty of Science
Branch I (A) : Mathematics
MTO 4C 16-SPECTRAL THEORY
[Programme-Core-Common for all]
(2012 Admission onwards)
Time : Three Hours
Maximum Weight: 30

Part A

Answer any five questions.
Each question has weight 1.

1. Define weak convergence in a normed space. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequence in a normed space X such that $x_{n} \xrightarrow{w} x$ and $y_{n} \xrightarrow{w} y$. Then prove that $x_{n}+y_{n} \xrightarrow{w} x+y$.
2. Let $\mathrm{X}=\mathrm{C}[0,1]$ and define $\mathrm{T}: \mathscr{D}(\mathrm{T}) \rightarrow \mathrm{X}$ by $\mathrm{T} x=x^{\prime}$, where the prime denotes differentiation and $\mathscr{D}(\mathrm{T})$ is the subspace of functions $x \in \mathrm{X}$ which have a continuous derivative. Prove that T is not bounded but is closed.
3. Prove that similar matrices have the same eigenvalues.
4. Let $S, T \in B(X, X)$, show that for any $\lambda \in \rho(S) \cap \rho(T) R_{\lambda}(S)-R_{\lambda}(T)=R_{\lambda}(S)(T-S) R_{\lambda}(T)$.
5. Define compact linear operator. Let X be a normed space with $\operatorname{dim} \mathrm{X}=\infty$. Prove that the identity operator $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{X}$ is not compact.
6. Consider the space l^{2}. Let $\mathrm{T}: l^{2} \rightarrow l^{2}$ defined by $\mathrm{T}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{1}, \frac{\xi_{2}}{2}, \frac{\xi_{3}}{3}, \ldots \ldots, \frac{\xi_{n}}{n}, 0,0, \ldots.\right)$. Prove that T is compact.
7. Let $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ be a bounded self-adjoint linear operator on a complex Hilbert space. Then prove that all eigenvectors corresponding to different eigenvalues of T are orthogonal.
8. Let $\mathrm{P}: \mathrm{H} \rightarrow \mathrm{H}$ be a bounded linear operator on a Hilbert space H . Suppose P is self-adjoint indempotent. Prove that P is a projection.

Part B

Answer any five questions.
Each question has weight 2.
9. Let $\left(x_{n}\right)$ be a sequence in a normed space X. Prove that:
(i) Strong convergence implies weak convergence with the same limit.
(ii) If $\operatorname{dim} \mathrm{X}<\infty$, then weak convergence implies strong convergence.
10. State and prove closed graph theorem.
 subspace of $\mathrm{X} \times \mathrm{Y}$.
12. Prove that the resolvent set $\rho(\mathrm{T})$ of a bounded linear operator T on a complex Banach space is open.
13. Let A be a complex Banach algebra with identity e. Let $x \in \mathrm{~A}$ and $\|x\|<1$. Prove that $e-x$ is invertible and $(e-x)^{-1}=e+\sum_{j=1}^{\infty} x^{j}$.
14. Let A be a complex Banach algebra with identity e. Then for any $x \in \mathrm{~A}$ prove that $\sigma(x)$ is compact.
15. Prove that a compact linear operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ from a normed space X into a Banch space has a compact linear extension $\tilde{T}: \hat{X} \rightarrow Y$, where \hat{X} is the completion of X.
16. let H be a complex Hilbert space and $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ be a bounded self-adjoint linear operator. Then prove that $m=\inf _{\|x\|=0}\langle\mathrm{~T} x, x\rangle$ and $\mathrm{M}=\sup _{\|x\|=1}\langle\mathrm{~T} x, x\rangle$ are spectral values of T .

Part C
 Answer any three questions.
 Each question has weight 5.

17. State and prove open mapping theorem.
18. Let X be a complex Banach space and $\mathrm{T} \in \mathrm{B}(\mathrm{X}, \mathrm{X})$. Let $r_{\sigma}(\mathrm{T})$ be spectral radius of T . Then prove that $r_{\sigma}(\mathrm{T})=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|\mathrm{T}^{n}\right\|}$.
19. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a compact linear operator. Prove that its adjoint operator $\mathrm{T}^{x}: \mathrm{Y}^{\prime} \rightarrow \mathrm{X}^{\prime}$ is a compact linear opeartor, where X and Y are normed space and X^{\prime} and Y^{\prime} are dual spaces of X and Y .
20. (a) Let $\left(\mathrm{T}_{n}\right)$ be a sequence of compact linear operators from a normed space X into a Banach space Y. If $\left(\mathrm{T}_{n}\right)$ is uniformly operator convergent to T , then prove that T is compact.
(b) Let $\mathrm{T}: l^{2} \rightarrow l^{2}$ defined by $\mathrm{T}\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{1}, \frac{\xi_{2}}{2}, \frac{\xi_{3}}{3}, \ldots, \frac{\xi_{n}}{n}, \ldots\right)$. Prove that T is a compact linear operator.
(c) Let X and Y be normed spaces and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ a compact linear operator. Suppose that $\left(x_{n}\right)$ in X is weakly convergent, say $x_{n} w x$ then prove that $\left(\mathrm{T} x_{n}\right)$ is strongly convergent in Y and has the limit $y=\mathrm{T}_{x}$.
21. If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive and commute then prove that their product ST is positive.
22. Let P_{1} and P_{2} be two projections on a Hilbert space H. Then prove that :
(i) $\mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}$ is a projection on H if and only if $\mathrm{Y}_{1} \subset \mathrm{Y}_{2}$ where $\mathrm{Y}_{i}=\mathrm{P}_{i}(\mathrm{H}), i=1,2$.
(ii) If $\mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}$ is a projection, P projects H onto Y , where Y is orthogonal complement of Y_{1} in Y_{2}.
(iii) $\mathrm{P}_{1}+\mathrm{P}_{2}-\mathrm{P}_{1} \mathrm{P}_{2}$ is a projection if $\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{P}_{1}$.
