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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

 

1.  Prove that if  is monotonic on  then  is of bounded variation on .

2.  Prove the additive property of arc lengths.

3.  Let   . Is  Riemann integrable on [0, 1] ?.

4.  If ƒ Î ℛ (α) and g Î ℛ (α) then show that ƒg Î ℛ (α).

5.  Define the unit step function . Is it continuous?.

6.  If  and  are sequences of bounded functions which converge uniformly on a set E, then prove
that  converges uniformly on E.

7.  State Weierstrass uniform convergence test for series of functions.

8.  Under what conditions, a sequence  of continuous functions defined on a compact set , is
convergent uniformly to a continuous function  ?

9.  Define piontwise boundedness and uniform boundedness of a sequence of functions.

10.  For  and  real, prove that 

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

 

11.  Let  be defined on . Then show that  is of bounded variation on  if, and only if,  can be
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expressed as the difference of two strictly increasing functions.

12.  Prove that a vector valued function  is rectifiable if and only if each of its components is of bounded
variation.

13.  If P* is a refinement of P then prove that U (P*, ƒ,α) ≤  U (P, ƒ,α).

14.  If ƒ is monotonic on [a, b] and if α is continuous on [a, b] then prove that ƒÎℛ(α).

15.  Prove that  is a convergent series having a discontinuous sum, where  

.

16.  Let  be monotonically increasing on . Suppose on  for  and
suppose  uniformly on  Then prove that  on .

17.  Let  be a compact metric space and let  be a subset of . Prove that  is compact if and only if 
 is uniformly closed, pointwise bounded and equicontinuous.  

18.  If  converge to  and if  prove that 

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

 

19.  (i)  State and prove additive property of total variation.
(ii)  Let  be of bounded variation on . Let  be defined on  as , if 

 and . Then prove that  and  are increasing functions on .

20.  Suppose α increases monotonically on [a,b], g is continuous and g(x) = G'(x) for a ≤ x ≤ b . Prove that 
 

21.  
Establish the existence of a real valued continuous function which is nowhere differentiable.

22.  Prove that, for every interval  there exits a sequence of real polynomials  such that 
 and such that  uniformly on .

(2×5=10 weightage)
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