QP CODE: 21101237
Reg No :
Name :

B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021

Sixth Semester

CORE - MM6CRT01 - REAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science \& B.Sc Computer Applications Model III Triple Main 2017 Admission Onwards

E6D35C1D
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions. Each question carries 2 marks.

1. Give an example of a function defind on R which is discontinuous only at $x=0$
2. Show that the continuous image of an open interval need not be an open interval.
3. Define Lipschitz function
4. Prove that if $f: I \rightarrow R$ is differentiable at $c \in I$, then f is continuous at c
5. Using the chain rule, find the derivative of $f^{n}(x)$, where $f: I \rightarrow R$ is differentiable and $n \geq 2, n \in N$
6. Check the validity of the following statement with proper reasoning 'Let f be a differentiable function on $A \subset R$, with $f^{\prime}(x)=0, \forall x$, then f is a constant'
7. How Riemann integral is related with areas of regions in \mathbb{R}^{2}.
8. Evaluate $\int_{0}^{1} \frac{1}{x^{2}+1} d x$.
9. Validate the statement "Riemann Integrable functions on an interval $[a, b]$ are continous on $[a, b]$ "
10. Evaluate $\lim \left(\frac{\operatorname{sinnx}}{1+n x}\right)$ for $x \in R, x \geq 0$
11. Show that the sequence of functions $h_{n}(x)=\frac{x^{2}}{n}$ converge uniformly on $[0,8]$.
12. Do the limit of a convergent sequence of differentiable functions on an interval $[a, b]$ is differentiable, if not what condition will make the limit function differentiable?

Part B

Answer any six questions.
Each question carries 5 marks.
13. Define Dirichlet's function. Show that it is not continuous at any point of R
14. Let $A \subseteq R$, let f and g be continuous on A to R , and let $b \in R$.
(a) Show that the function $\mathrm{f}+\mathrm{g}$ is continuous on A .
(b) If $h: A \rightarrow R$ is continuous on A and $h(x) \neq 0$ for $x \in A$, show that quotient f / h is continuous on A .
15. Let $I \subseteq R$ be an interval and let $f: I \rightarrow R$ be monotone on I. Then prove that the set of points $D \subseteq I$ at which f is discontinuous is a countable set .
16. Let $f: R \rightarrow R$ defined by $f(x)=\left\{\begin{array}{ll}x^{2}, & x \text { is rational } \\ x, & x \text { is irrational }\end{array}\right.$, Prove that f is differentiable at $x=0$
17. Using Mean value Theorem, Prove the following inequality $-x \leq \sin x \leq x, \forall x \geq 0$
18. State and Prove L' Hospitals's Rule I?
19. State and prove Squeeze Theorem for Riemann integrability.
20. Evaluate $\int_{1}^{4} \frac{\cos \sqrt{t}}{\sqrt{t}} d t$.
21. State a sufficient condition to guarantee $\int_{a}^{b} f=\lim \int_{a}^{b} f_{n}$. Show that $\int_{1}^{2} e^{-n x^{2}} d x=0$.

Part C

Answer any two questions.
Each question carries 15 marks.
22. (a) Let $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ be a closed bounded interval and let $f: I \rightarrow R$ be continuous on I. Then prove that f has an absolute maximum and an absolute minimum on I .
(b) State and prove Preservation of intervals Theorem.
23. (a.) State and Prove L'Hospital's Rule II
(b.) Using this, find the following
(i.) $\lim _{x \rightarrow 0+} \frac{\log \sin x}{\log x}$
(ii.) $\lim _{x \rightarrow \infty} \frac{\log x}{x}$
24. (a) Let $f \in \mathcal{R}[a, b]$ and if $\left(\mathcal{P}_{n}\right)$ is any sequence of tagged partitions of $[a, b]$ such that $\left\|\mathcal{P}_{n}\right\| \rightarrow 0$, prove that $\int_{a}^{b} f=\lim _{n} S(f ; \mathcal{P})$.
(b) Suppose that f is bounded on $[a, b]$ and that there exists two sequences of tagged partitions $\left(\mathcal{P}_{n}\right)$ and $\left(\mathcal{Q}_{n}\right)$ of $[a, b]$ such that $\left\|\mathcal{P}_{n}\right\| \rightarrow 0$ and $\left\|\mathcal{Q}_{n}\right\| \rightarrow 0$, but such that $\lim _{n} S\left(f ; \mathcal{P}_{n}\right) \neq \lim _{n} S\left(f ; \mathcal{Q}_{n}\right)$. Show that $f \notin \mathcal{R}[a, b]$.
25. (a)State and prove the additivity theorem for Riemann integrable functions.
(b)Let $f \in \mathcal{R}[a, b]$ and if $[c, d] \subset[a, b]$, then the restriction of f to $[c, d]$ is in $\mathcal{R}[c, d]$.

