QP CODE: 21002036

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021

First Semester

CORE - ME010104 - REAL ANALYSIS

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 ADMISSION ONWARDS

94FDAC0B

Time: 3 Hours

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Let f be continuous on [a, b]. Then prove that f is of bounded variation on [a, b] only if f can be expressed as the difference of two increasing continuous functions.
- 2. Let f and g be complex valued functions defined as follows : $f(t) = e^{2\pi i t}$ if $t \in [0, 1]$ and $g(t) = e^{4\pi i t}$ if $t \in [0, 1]$. Then prove that the length of g is twice that of f.
- 3. Define upper and lower Riemann Stieltjes sum for a real bounded function.
- 4. Show that $\int_a^b f d\alpha \leq \int_a^{\overline{b}} f d\alpha$.
- 5. If $f \in \mathscr{R}(\alpha)$ on [a, b] then show that $|f| \in \mathscr{R}(\alpha)$.
- 6. Define pointwise convergence of sequence of functions.
- 7. When a series $\Sigma f_n(x)$ is said to converge uniformly on a set ?
- 8. Every convergent sequence is a Cauchy sequence. What about the converse?
- 9. If K is compact, if $f_n \in \mathscr{C}(K)$ for n = 1, 2, 3, ..., and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then prove that $\{f_n\}$ is uniformly bounded on K.
- 10. Prove that $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

Page 1/2

^{11.} Show that $f(x) = x^2 \cos \frac{1}{x}$ if $x \neq 0$ and f(0) = 0 is of bounded variation on [0, 1].

Turn Over 1/2

Weightage: 30

Reg No :

210020

- 12. Let f be of bounded variation on [a, b]. Let V be defined on [a, b] as follows: $V(x) = V_f(a, x)$ if $a < x \le b$, V(a) = 0. Then prove that
 - (i). V is an increasing function on [a, b].
 - (ii). V f is an increasing function on [a, b].
- 13. If a < s < b, f is bounded on [a,b], f is continuous at s and $\alpha(x) = I(x-s)$, where I is the unit step function, then prove that $\int_{a}^{b} f d\alpha = f(s)$.
- 14. If $f \in \mathcal{R}$ on [a,b] and if there is a differential function F on [a,b] such that F' = f, then prove that $\int_a^b f(x)dx = F(b) F(a)$.
- 15. Prove that the function $f_n(x) = n^2 x (1 x^2)^n$; $0 \le x \le 1$, converges to a continuous function although the convergence is not uniform.
- 16. Obtain a series from $\phi(x) = |x|, (-1 \le x \le 1)$ and $\phi(x+2) = \phi(x)$ for all real x, which converges uniformly on R^1 .
- 17. Suppose $\{f_n\}$ is an equicontinuous sequece of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.
- 18. For the double sequence a_{ij} , i = 1, 2, 3, ..., j = 1, 2, 3, ..., suppose that $\sum_{j=1}^{\infty} |a_{ij}| = b_i, \ (i = 1, 2, 3, ...) \text{ and } \sum b_i \text{ converges. Prove that } \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

19. (i) State and prove additive property of arc length function $\Lambda_f(x, y)$ for a rectifiable curve f. (ii) Define $s(x) = \Lambda_f(a, x)$ for $x \in [a, b]$ and let s(a) = 0 for a rectifiable path f defined on [a, b]. Then prove that the function f is increasing and continuous on [a, b]. (iii) Let $f : [a, b] \to R^n$ and $g : [c, d] \to R^n$ be two paths in R^n , each of which is one to one on its domain. Then prove that \mathbf{f} and \mathbf{g} are equivalent if and only if they have the same graph.

- 20. (i) If f is continuous on [a, b] then show that $f \in \mathcal{R}(\alpha)$. (ii) If f is monotonic on [a, b] and if α is continuous on [a, b] then prove that $f \in \mathcal{R}(\alpha)$.
- 21. Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathscr{R}(\alpha)$ on [a, b], for n = 1, 2, 3, ... and suppose $f_n \to f$ uniformly on [a, b]. Then prove that $f \in \mathscr{R}(\alpha)$ on [a, b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$. Also show that if the series $f(x) = \sum_{n=1}^{\infty} f_n(x), (a \le x \le b)$ converges uniformly on [a, b], then $\int_a^b f d\alpha = \sum_{n=1}^{\infty} \int_a^b f_n d\alpha$.
- 22. State and prove Weierstrass approximation theorem.

(2×5=10 weightage)

