\qquad
\qquad

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021

First Semester

CORE - ME010104 - REAL ANALYSIS
M Sc MATHEMATICS,M Sc MATHEMATICS (SF) 2019 ADMISSION ONWARDS 94FDACOB

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Let f be continuous on $[a, b]$. Then prove that f is of bounded variation on $[a, b]$ only if f can be expressed as the difference of two increasing continuous functions.
2. Let f and g be complex valued functions defined as follows : $f(t)=e^{2 \pi i t}$ if $t \in[0,1]$ and $g(t)=e^{4 \pi i t}$ if $t \in[0,1]$. Then prove that the length of g is twice that of f.
3. Define upper and lower Riemann Stieltjes sum for a real bounded function.
4. Show that $\int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{\bar{b}} f d \alpha$.
5. If $f \in \mathscr{R}(\alpha)$ on $[a, b]$ then show that $|f| \in \mathscr{R}(\alpha)$.
6. Define pointwise convergence of sequence of functions.
7. When a series $\Sigma f_{n}(x)$ is said to converge uniformly on a set?
8. Every convergent sequence is a Cauchy sequence. What about the converse?
9. If K is compact, if $f_{n} \in \mathscr{C}(K)$ for $n=1,2,3, \ldots$, and if $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on K, then prove that $\left\{f_{n}\right\}$ is uniformly bounded on K.
10. Prove that $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Show that $f(x)=x^{2} \cos \frac{1}{x}$ if $x \neq 0$ and $f(0)=0$ is of bounded variation on $[0,1]$.
12. Let f be of bounded variation on $[a, b]$. Let V be defined on $[a, b]$ as follows: $V(x)=V_{f}(a, x)$ if $a<x \leq b, V(a)=0$. Then prove that
(i). V is an increasing function on $[a, b]$.
(ii). $V-f$ is an increasing function on $[a, b]$.
13. If $\mathrm{a}<\mathrm{s}<\mathrm{b}, f$ is bounded on $[\mathrm{a}, \mathrm{b}], f$ is continuous at \boldsymbol{s} and $\mathrm{a}(\mathrm{x})=I(\mathrm{x}-\boldsymbol{s})$, where l is the unit step function, then prove that $\int_{a}^{b} f d \alpha=f(s)$.
14. If $f \in \mathscr{R}$ on $[a, b]$ and if there is a differential function F on $[a, b]$ such that $F^{\prime}=f$, then prove that $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
15. Prove that the function $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n} ; 0 \leq x \leq 1$, converges to a continuous function although the convergence is not uniform.
16. Obtain a series from $\phi(x)=|x|,(-1 \leq x \leq 1)$ and $\phi(x+2)=\phi(x)$ for all real x, which converges uniformly on R^{1}.
17. Suppose $\left\{f_{n}\right\}$ is an equicontinuous seqeuce of functions on a compact set K, and $\left\{f_{n}\right\}$ converges pointwise on K. Prove that $\left\{f_{n}\right\}$ converges uniformly on K.
18. For the double sequence $a_{i j}, i=1,2,3, \ldots, j=1,2,3, \ldots$, suppose that $\sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i},(i=1,2,3, \ldots)$ and $\sum b_{i}$ converges. Prove that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}$.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

19. (i) State and prove additive property of arc length function $\Lambda_{f}(x, y)$ for a rectifiable curve f.
(ii) Define $s(x)=\Lambda_{f}(a, x)$ for $x \in[a, b]$ and let $s(a)=0$ for a rectifiable path f defined on $[a, b]$. Then prove that the function f is increasing and continuous on $[a, b]$.
(iii) Let $f:[a, b] \rightarrow R^{n}$ and $g:[c, d] \rightarrow R^{n}$ be two paths in R^{n}, each of which is one to one on its domain. Then prove that \mathbf{f} and \mathbf{g} are equivalent if and only if they have the same graph.
20. (i) If f is continuous on $[a, b]$ then show that $f \in \mathscr{R}(\alpha)$.
(ii) If f is monotonic on $[a, b]$ and if $\boldsymbol{\alpha}$ is continuous on $[a, b]$ then prove that $f \in \mathscr{R}(\alpha)$.
21. Let α be monotonically increasing on $[a, b]$. Suppose $f_{n} \in \mathscr{R}(\alpha)$ on $[a, b]$, for $n=1,2,3, \ldots$ and suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then prove that $f \in \mathscr{R}(\alpha)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$. Also show that if the series $f(x)=\sum_{n=1}^{\infty} f_{n}(x),(a \leq x \leq b)$ converges uniformly on $[a, b]$, then $\int_{a}^{b} f d \alpha=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d \alpha$.
22. State and prove Weierstrass approximation theorem.
