BSc DEGREE (CBCS) EXAMINATION, MARCH 2020
 Sixth Semester
 Core course - MM6CRT01 - REAL ANALYSIS

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science,B.Sc Computer Applications

Model III Triple Main
2017 Admission Onwards
BFF2D188
Time: 3 Hours
Maximum Marks :80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Let $A \subseteq R$. If $f: A \rightarrow R$ is continuous on A , then prove that $|\mathrm{f}|$ is continuous on A .
2. Give an example of a discontinuous function defined on a closed interval C but not bounded on C
3. Define Monotone function. Show that such functions need not be continuous.
4. Let f, g are differentiable functions, then prove that $f-g$ is also differentiable?
5. Given that the function $f: R \rightarrow R$ defined by $f(x)=x^{5}+4 x+3$ is invertible and let g be its inverse. Find the value of $g^{\prime}(8)$?
6. Define increasing function with a proper example?
7. Let $f, g:[a, b] \rightarrow \mathbb{R}$, if \mathcal{P} is a tagged partition of $[a, b]$ show that $S(f+g ; \dot{\mathcal{P}})=S(f ; \dot{\mathcal{P}})+S(g ; \dot{\mathcal{P}})$
8. Give an example of a function which is Riemann integrable on an interval $[a, b]$ in \mathbb{R} but not continous in $[a, b]$
9. Give an example of a function on $[0,1]$ which is Riemann integrable but not continous.
10. Evaluate $\lim x^{2} e^{-n x}$.
11. Define uniform norm of a bounded function $\phi: A \rightarrow R$. State a necessary and sufficient condition for uniform convergence of a sequence of bounded functions $\left(f_{n}\right)$ on $A \subseteq R$
12. If $a>0$, show that $\lim \int_{a}^{\pi} \frac{(\operatorname{sinnx})}{(n x)} d x=0$.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Define Thomae's function on $(0, \infty)$ and show that it is continuous precisely at the irrational points in $(0, \infty)$.
14. Define $g: R \rightarrow R$ by $\mathrm{g}(\mathrm{x})=2 \mathrm{x}$ for x rational, and $\mathrm{g}(\mathrm{x})=\mathrm{x}+3$ for x irrational. Find all points at which g is continuous.
15. State and prove Bolzano's Intermediate value theorem.
16. State and Prove the Chain rule of differentiation?
17. State and prove the first derivative test for extrema?
18. Evaluate the limit $\lim _{x \rightarrow 0+}(\sin x)^{x}, x \in(0, \pi)$
19. If f is continous on [a, b] then the indefinite integral defined by $F(z)=\int_{a}^{z} f \forall z \in[a, b]$ is differentiable on $[a, b]$ and $F^{\prime}(x)=f(x) \forall \in x[a, b]$.
20. Evaluate $\int_{1}^{4} \frac{\sqrt{1+\sqrt{t}}}{\sqrt{t}} d t$.
21. Check the uniform convergence of $\left(g_{n}\right)$ on \mathbb{R} where $g_{n}(x)=\frac{x^{2}+n x}{n}$.

Part C

Answer any two questions.
Each question carries 15 marks.
22. (a) State and prove Continuous Extension Theorem.
(b) Let I be a closed bounded interval and let $f: I \rightarrow R$ be continuous on I. Then prove that f is uniformly continuous on I .
23. (a.) State and Prove L'Hospital's Rule I
(b.) Using this, find the following
(i.) $\lim _{x \rightarrow 0+} \frac{\tan x-x}{x^{3}}, x \in\left(0, \frac{\pi}{2}\right)$
(ii.) $\lim _{x \rightarrow 0+} \frac{\log \cos x}{x}$
24. (a) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and that $f(x)=0$, except for a finite number of ponits $c_{1}, c_{2}, \ldots \ldots c_{n}$ in $[a, b]$. Prove that $f \in \mathcal{R}[a, b]$ and $\int_{a}^{b} f=0$.
(b) If $g \in \mathcal{R}[a, b]$ and if $f(x)=g(x)$ except for a finite number of ponts in $[a, b]$, prove that $f \in \mathcal{R}[a, b]$ and that $\int_{a}^{b} f=\int_{a}^{b} g$.
25. (a) State and prove the Cauchy Criterion for Riemann integrability of a function $f:[a, b] \rightarrow \mathbb{R}$.
(b) Check the Riemann integrability of Dirichlet function.

