

Reg No	•	•••••
Name	•	•••••

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Core course - MM6CRT01 - REAL ANALYSIS

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science,B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

BFF2D188

Time: 3 Hours

Maximum Marks :80

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. Let $A \subseteq R$. If $f: A \to R$ is continuous on A, then prove that |f| is continuous on A.
- 2. Give an example of a discontinuous function defined on a closed interval C but not bounded on C
- 3. Define Monotone function. Show that such functions need not be continuous.
- 4. Let f, g are differentiable functions, then prove that f g is also differentiable?
- 5. Given that the function $f : R \to R$ defined by $f(x) = x^5 + 4x + 3$ is invertible and let g be its inverse. Find the value of g'(8)?
- 6. Define increasing function with a proper example?
- 7. Let $f, g: [a, b] \to \mathbb{R}$, if $\dot{\mathcal{P}}$ is a tagged partition of [a, b] show that $S(f+g; \dot{\mathcal{P}}) = S(f; \dot{\mathcal{P}}) + S(g; \dot{\mathcal{P}})$
- 8. Give an example of a function which is Riemann integrable on an interval [a, b] in \mathbb{R} but not continuous in [a, b]
- 9. Give an example of a function on [0, 1] which is Riemann integrable but not continous.
- 10. Evaluate $limx^2e^{-nx}$.
- 11. Define uniform norm of a bounded function $\phi : A \to R$.State a necessary and sufficient condition for uniform convergence of a sequence of bounded functions (f_n) on $A \subseteq R$

12. If a > 0, show that $\lim \int_a^{\pi} \frac{(sinnx)}{(nx)} dx = 0$.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

- 13. Define Thomae's function on $(0, \infty)$ and show that it is continuous precisely at the irrational points in $(0, \infty)$.
- 14. Define $g : R \to R$ by g(x) = 2x for x rational, and g(x) = x + 3 for x irrational. Find all points at which g is continuous.
- 15. State and prove Bolzano's Intermediate value theorem.
- 16. State and Prove the Chain rule of differentiation ?
- 17. State and prove the first derivative test for extrema?
- 18. Evaluate the limit $\lim_{x\to 0^+} (\sin x)^x, x \in (0,\pi)$
- 19. If f is continous on [a, b] then the indefinite integral defined by $F(z) = \int_{a}^{z} f \ \forall z \in [a, b]$ is differentiable on [a, b] and $F'(x) = f(x) \ \forall \in x[a, b]$.

20. Evaluate
$$\int_{1}^{4} \frac{\sqrt{1+\sqrt{t}}}{\sqrt{t}} dt$$

21. Check the uniform convergence of (g_n) on \mathbb{R} where $g_n(x) = \frac{x^2 + nx}{n}$.

 $(6 \times 5 = 30)$

Part C

Answer any **two** questions. Each question carries **15** marks.

- (a) State and prove Continuous Extension Theorem.
 (b) Let I be a closed bounded interval and let f : I → R be continuous on I. Then prove that f is uniformly continuous on I.
- 23. (a.) State and Prove L'Hospital's Rule I

(b.) Using this, find the following
(i.)
$$\lim_{x\to 0+} \frac{\tan x - x}{x^3}, x \in (0, \frac{\pi}{2})$$

(ii.) $\lim_{x\to 0+} \frac{\log \cos x}{x}$

- 24. (a) Suppose that f: [a, b] → R and that f(x) = 0, except for a finite number of ponits c₁, c₂, ..., c_n in [a, b]. Prove that f ∈ R[a, b] and ∫ f = 0.
 (b) If g ∈ R[a, b] and if f(x) = g(x) except for a finite number of ponts in [a, b], prove that f ∈ R[a, b] and that ∫ f = ∫ g.
- 25. (a) State and prove the Cauchy Criterion for Riemann integrability of a function f: [a, b] → R.
 (b) Check the Riemann integrability of Dirichlet function.

(2×15=30)