B.Sc. DEGREE(CBCS) EXAMINATION, OCTOBER 2019

Third Semester
B.Sc Physics Model I

CORE COURSE - PH3CRT03 - OPTICS, LASER AND FIBER OPTICS

(Common to B.Sc Physics Model I, B.Sc Physics Model II Applied Electronics, B.Sc Physics Model II Computer Applications, B.Sc Physics Model III Electronic Equipment Maintenance)

2017 Admission Onwards
588E4DD5

Maximum Marks: 60
Time: 3 Hours

> Part A
> Answer any ten questions.
> Each question carries 1 mark.

1. Can interference occur with sound waves? Explain
2. Oil spread on the surface of water appears colored. Why?
3. Write the condition for obtaining bright fringes in interference pattern due to transmitted light?
4. How would you obtain Newton's rings with bright centre?
5. Distinguish between interference and diffraction
6. What is a plane diffraction grating?
7. What are polaroids?
8. What is the disadvantage of retardation plates?
9. Write any two methods to produce population inversion
10. The efficiency of a four level laser is less than that of a three level laser. Still the four level laser is better than the three level laser. Explain
11. Write two characteristics of a laser beam
12. What is the basic principle of guiding light through an optical fiber?

Part B

Answer any six questions.
Each question carries 5 marks.
14. Two narrow and parallel slits 0.1 cm apart are illuminated with a monochromatic light of wavelength 589.3 nm . The interference pattern is observed at a distance of 25 cm from the slits. Calculate the fringe width.
15. A shift of 100 circular fringes is observed, when the movable mirror of Michelson's interferometer is shifted by 0.0295 mm . Calculate the wavelength of light.
16. A convex lens of focal length 20 cm is placed after a slit of width 0.6 mm . If a plane wave of wavelength $6000 \mathrm{~A}^{0}$ falls normally on the slit, calculate the separation between the second minima on either side of the central maximum.
17. A ray of light is incident on the surface of a plate of glass of refractive index 1.62 at the polarizing angle. Calculate the angle of refraction
18. Calculate the thickness of a calcite plate which would convert plane polarized light into circularly polarized light. Wavelength of light used is 589 nm . Refractive index of calcite for Oray is 1.658 and that of e-ray is 1.486
19. At what temperature are the rays of spontaneous and stimulated emission equal if the wavelength 1 of emitted photon 500 nm . If the temperature is 300 K at what wavelength they are equal
20. Find the relative population of two states in a Ruby laser that produces light beam of wavelength 694.3 nm at 300 K .
21. What ido you mean by modes of propagation? Compare a single mode and multimode fiber.

> Part C
> Answer any two questions.

Each question carries 10 marks.
22. Explain the formation of interference fringes formed by an air wedge. Derive an expression for the fringe width. How can the above method used for determining the diameter of thin wire accurately
23. Show that the radii of its half period zones are proportional to the square root of natural numbers. Derive an expression for its focal length. Aslo show that for a given wavelength, zone plate has multiple foci.
24. Explain the Fraunhofer diffraction at double slits and compare the intensity distribution pattern with that of a single slit.
25. Write names of various losses taking place in the optical fiber. If the length of optical fiber is 6 km and output power is $1 / 120$ of input power, then find fiber loss and attenuation coefficient.
$(2 \times 10=20)$

