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Part A

Answer any ten questions.

Each question carries 2 marks.
 

1.  Sketch the domain for the function .

2.  Find  and  if  at the point .

3.  If , evaluate .

 

       
 4.  

Show that the matrix is singular.

5.  Write the matrix equation of the system of linear equations 

6.  Prove or disprove: A characteristic vector of a matrix can correspond to two different characteristics
roots of that matrix.

7.  Express  in terms of .

8.  Prove that .

9.  If  is real, show that .

10.  Write the binomial expansions of  and  when  is a rational number.
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11.  Define a transcendental equation. Give an example.

12.  Obtain the next approximation to a real root of the equation , by using the Newton -
Raphson method, if  is the initial approximation.

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.
 

13.  Find all the second-order partial derivatives of .

14.  Use chain rule to evaluate  at  if .

15.  Find   when  if .

16.  Show that the characteristic roots of an idempotent matrix are either zero or unity.

 

     
 17.  

Verify the Cayley-Hamilton theorem for the matrix .

18.  If  ,  prove that 

.

19.  Sum to infinity the series 

20.  Given that the equation  has a root between  and . Use the method of regula-falsi to
determine it.

21.  Use the generalized Newton's method to find a double root of the equation 
 near .

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.
 

22.   

a.Reduce to the  normal form. 

b. Obtain the row equivalent canonical matrix of 

4(x − sinx) = 1
= 1x0

w =
x−y

+yx2

dw

dt
t = 3 w = ln( + + ),  x = cos t,  y = sin t,  z = 4x2 y2 z2 t√
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23.  Show that the system of equations
 is consistent and hence

solve the same.

24.  (a) Expand  in a series of sines of multiples of . 
(b) Sum to infinity the series

25.  State and prove the theorem, which gives a sufficient condition for convergence of the iteration process
in the iteration method for finding the roots of a given equation.

(2×15=30)

x + 2y + z = 2, 3x + y − 2z = 1, 4x − 3y − z = 3, 2x + 4y + 2z = 4

θ θsin3 cos5 θ

 c sinα + sin 2α + sin 3α+. . .c2
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