M Sc DEGREE (CSS) EXAMINATION, MARCH 2021

Third Semester

Faculty of Science

CORE - ME010302 - PARTIAL DIFFERENTIAL EQUATIONS M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
 2019 Admission Onwards
 82B9F486

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)
 Answer any eight questions.

Weight 1 each.

1. Verify that the equation $2 y(a-x) d x+\left[z-y^{2}+(a-x)^{2}\right] d y-y d z=0$ is integrable.
2. Form the partial differential equation corresponding to $x^{2}+y^{2}+(z-c)^{2}=a^{2} \quad$ where a and c are arbitrary constants.
3. Verify that the equation $z=\sqrt{(2 x+a)}+\sqrt{2 y+b}$ is a complete integral of the partial differential equation $z=\frac{1}{p}+\frac{1}{q}$.
4. Show that the equations $f(x, y, z, p, q)=0, g(x, y, z, p, q)=0$ are compatible if $\frac{\partial(f, g)}{\partial(x, p)}+\frac{\partial(f, g)}{\partial(y, q)}=0$.
5. Find a complete integral of the equation $p q=1$.
6. Prove $F\left(D, D^{\prime}\right) e^{a x+b y}=F(a, b) e^{a x+b y}$.
7. Find the particular integral of $\left[D^{2}-D^{\prime 2}\right] z=x-y$.
8. Write the condition for the second order PDE $u_{y y}-y u_{x x}+x^{3} u=0$ to be hyperbolic.
9. Prove that $r \cos \theta$ satisfy the Laplace's equation, when r, θ, ϕ are spherical polar coordinates
10. Prove that the function $\phi=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y$ is Harmonic.

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Find the integral curves of $\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)}$
12. Find the orthogonal trajectories on the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$ of its intersections with the family of planes parallel to $z=0$
13. Find the general solution of the linear partial differential equation
$x\left(x^{2}+3 y^{2}\right) p-y\left(3 x^{2}+y^{2}\right) q=2 z\left(y^{2}-x^{2}\right)$.
14. Find the complete integral of the equation $2(z+x p+y q)=y p^{2}$.
15. Verify that the PDE $z_{x x}-\frac{1}{x} z_{x}=4 x^{2} z_{y y}$ is satisfied by $z=f\left(x^{2}-y\right)+g\left(x^{2}+y\right)$.
16. Solve $\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{4} z}{\partial y^{4}}=2 \frac{\partial^{4} z}{\partial x^{2} \partial y^{2}}$.
17. Describe the method of seperation of variables for solving a second order linear partial differential equations.
18. Show that the right circular cones $x^{2}+y^{2}=c z^{2}$ forms a set of equipotential surfaces and show that the corresponding potential function is of the form A $\log (\tan (\theta / 2))+B$ where A\&B are constants and θ is the usual polar angle.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. a) Prove that if X is a vector such that $X \cdot \operatorname{curl} X=0$ and μ is an arbitrary function of x, y, z, then $(\mu X) \cdot \operatorname{curl}(\mu X)=0$. b) Prove that a necessary and sufficient condition that the Pfaffian differential equation $X \cdot r=0$ should be integrable is that $X \cdot \operatorname{curl} X=0$.
20. Find the general equation of the surfaces orthogonal to the family given by $x\left(x^{2}+y^{2}+z^{2}\right)=c_{1} y^{2}$ showing that one such orthogonal set consists of the the family of spheres given by $x^{2}+y^{2}+z^{2}=c_{2} z$. If a family exists, orthogonal to both the above equations, show that it must satisfy $2 x\left(x^{2}-z^{2}\right) d x+y\left(3 x^{2}+y^{2}-z^{2}\right) d y+2 z\left(2 x^{2}+y^{2}\right) d z=0$.
21. By Jacobi's method, solve $z^{2}+z u_{z}-u_{x}^{2}-u_{y}^{2}=0$.
22.

Solve the wave equation $r=t$ by Monge's method.

