

Reg. No.....

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2018

Third Semester

Faculty of Science

Branch I (A)-Mathematics

MT 03 C 15—OPTIMIZATION TECHNIQUES

(2012 Admission onwards)

Time : Three Hours

Maximum Weight : 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. How does integer programming differ from linear programming ?
- 2. What is the effect of the 'integer' restriction of all the variables on the feasible space of integer programming problem ?
- 3. Define the following :
 - (a) Competitive game.
 - (b) Pure and mixed strategies.
- 4. Define the following :
 - (a) Pay-off matrix.
 - (b) Rectangular game.
- 5. Define the following :
 - (a) A chain.
 - (b) A path.
 - (c) A connected graph.
- 6. Write a short note on sensitivity analysis.
- 7. Define the following terms :
 - (a) Gradient vector.
 - (b) Hessian matrix.
- 8. What are the primary uses of Kuhn-Tucker necessary and sufficient conditions ?

 $(5 \times 1 = 5)$

1/4

Turn over

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Describe the branch and bound method in integer programming.
- 10. Solve the problem using cutting plane method :

 $\begin{array}{ll} \text{Maximise } x_1 + x_2 \\ \text{subject to} & 7x_1 - 6x_2 \leq 5 \\ & 6x_1 + 3x_2 \geq 7 \\ & -3x_1 + 8x_2 \leq 6 \\ & x_1, x_2 \ \text{ non-negative integers.} \end{array}$

11. Five villages in a hilly region are connected by roads. The direct distance (in km) between each pair of villages along a possible road and it cost of construction per km (in 10⁴ rupees) are given below. Find the minimum cost at which all the villages can be connected and the roads which should be constructed :

		Distances					
		1	2	3	4	5	_
	1		18	12	15	10	
Costs	2	3		15	8	22	
	3	4	3		6	20	
	4	5	5	6		7	
	5	2	2	5	7		

- 12. Write a short note on sensitivity analysis.
- 13. Use Graphical methods to solve the game with pay-off matrix :
 - $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \end{bmatrix}.$
- 14. Explain the principle of dominance in Game theory.

15. Minimize the following objective function using a Golden section search. Use a resolution of $\epsilon = 0.10$.

Minimize $f(x) = 3x^4 + (x-1)^2$ $4 \ge x \ge 0.$

16. Show that the point x = (0.0) is a global minimum solution to $f(x) = x_2^2 + 3x_1^6 + 5x_2^4$.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

17. (a) Maximize $5x_1 + 2x_2 + x_3$

subject to $x_1 + x_2 + 2x_3 \le 10$, $|-3x_1 + 10x_2 - x_3| \ge 15$, $x_1, x_2, x_3 \ge 0$.

- (b) Express the following conditions as simultaneous constraints using 0.1 variables :
 - (i) Either $x_1 + 2x_2 \le 4$ or $2x_1 + 3x_2 \ge 12$.
 - (ii) If $x_3 \le 4$ then $x_4 \ge 5$, otherwise $x_4 \le 2$.
 - (iii) $x_5 = 1 \text{ or } 3 \text{ or } 5 \text{ only.}$
 - (iv) At least two of the following constraints are satisfied $x_6 + x_7 \le 3, x_6 \le 2, x_7 \le 4, x_6 + x_7 \ge 5.$
- 18. State and prove Mini-max theorem.
- 19. Solve the following LP problem :

Maximize Z = $3x_1 + 5x_2$

subject to the constraints $3x_1 + 2x_2 \le 18$

$$x_1 \le 4$$
$$x_2 \le 6, x_1, x_2 \ge 0$$

and (a) Determine the optimal solution of the problem ; (b) Discuss the change in c_j on the optimality of the optimal basic feasible solution.

20. Write both the primal and dual $\rm L_p$ problems corresponding to the rectangular game with the following pay-off matrix :

 $\begin{bmatrix} 1 & -1 & 3 \\ 3 & 5 & -3 \\ 6 & 2 & -2 \end{bmatrix}.$

Solve the game by solving $L_{\rm p}$ problems by simplex method.

Turn over

21. Solve the following problem using only the Kuhn–Tucker conditions :

 $f(x) = 100 - 1.2x_1 - 1.5x_2 + 0.3x_1^2 + 0.05x_2^2$

subject to $g_1(x) = x_1 + x_2 \ge 35$ $g_2(x) = x_1 \ge 0$ $g_3(x) = x_2 \ge 0.$

22. Use projected gradient method to solve the problem :

Minimize $f(x) = (x_1 - 3)^2 + (x_2 - 4)^2$. subject to $2x_1 + x_2 = 3$.

 $(3\times 5=15)$

