Turn Over

Reg No	:	•••••
Name	:	•••••

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Choice Based Core Course - MM6CBT01 - OPERATIONS RESEARCH

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

E6EBE66E

Time: 3 Hours

Weightage: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- Define basic feasible solution of an LP problem. 1.
- Use the Graphical method to solve the given LP problem. 2. Maximize $Z = -x_1 + 2x_2$ subject to the constraints $x_1 - x_2 \leq \ -1, \quad -0.5 x_1 + x_2 \ \leq 2 \ , \quad x_1 \ , \ x_2 \ \geq 0.$
- Define Iso- profit (cost) function line. 3.
- How can you identity a key row in simplex table and Define key element . 4.
- Define un restricted variables. 5.
- State complete slackness theorem. 6.
- What is the indicator of an alternate optimal solution in a transportation problem? 7.
- Why is the enumeration method not always suitable for solving an assignment problem? 8.
- 9. Find an Initial Basic Feasible Solution by North West Corner Method:

	D1	D2	D3	D4	Supply
01	21	16	15	3	11
O2	17	18	14	23	13
O3	32	27	18	41	19
Demand	6	10	12	15	

10. Find an optimal assignment to minimize cost:

	Programmes				
		А	В	С	D
	1	2	3	4	5
Programmers	2	4	5	6	7
	3	7	8	9	8
	4	3	5	8	4

- 11. Explain two person zero sum game with a suitable example.
- 12. Define pure strategy and mixed strategy.

 $(10 \times 2 = 20)$

Part B

Answer any six questions. Each question carries 5 marks.

- 13. A manufacturer produces two different models, X and Y of the same product. Model X makes a contribution of Rs.50 per unit and model Y, Rs.30 per unit, towards total profit. Raw materials r₁ and r₂ are required for production. At least 18 kg of r₁ and 12 kg of r₂ must be used daily. Also at most 34 hours of labour are to be utilized. A quantity of 2 kg of r₁ is needed for model X and 1 kg of r₁ for model Y. For each of X and Y, 1 kg of r₂ is required. It takes 3 hours to manufacture model X and 2 hours to manufacture model Y. Formulate this problem as an LP model.
- 14. a)Define slack variables , surplus variables and artificial variables in an LP problem.b) Introduce the above variables using an example..
- 15. Use Big –M method and find first two tables, to solve the following LP problem. Maximize $Z = x_1 + 2x_2 + 3x_3 - x_4$ subject to the constraint s $x_1 + 2x_2 + 3x_3 = 15$, $2x_1 + x_2 + 5x_3 = 20$,
- 16. Solve the following LP problem

 $\begin{array}{ll} \mbox{Maximize } Z=6x_1+4x_2 & \mbox{subject to the constraints} \\ x_1+x_2\leq 5 \ , \ x_2\geq 8, & \mbox{and} \ x_1\,, x_2\,\geq 0. \end{array}$

- 17. Explain primal dual relationship in LP problem.
- 18. Write the dual of the following LP problem.

Minimize $Z = 2x_1 + 5x_2 + 6x_3$ subject to the constraints $5x_1 + 6x_2 - x_3 \le 3$, $-2x_1 + x_2 + 4x_3 \le 4$, $x_1 - 5x_2 + 3x_3 \le 1$, $-3x_1 - 3x_2 + 7x_3 \le 6$ and $x_1, x_2, x_3 \ge 0$

	D1	D2	D3	D4	Supply
01	1	2	-2	3	70
O2	2	4	0	1	38
03	1	2	-2	5	32
Demand	40	28	30	42	

19. Find an Initial Basic Feasible Solution by VAM and solve the following Transportation Problem to minimize cost:

20. Find an optimal assignment to minimize cost:

		Job			
		Ι	II	III	IV
	1	10	24	30	15
Contractor	2	16	22	28	12
	3	12	20	32	10
	4	9	26	34	16

21. Solve the game using matrix method after reducing to a 2 x 2 game,

	Player B				
Player A	B ₁	B ₂	B ₃		
A ₁	1	7	2		
A ₂	6	2	7		
A ₃	5	1	6		

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

22. Solve using Simplex method,

.

Maximize $Z = 2x_1 + 5x_2$, Subject to the constraints

$$\begin{array}{ll} x_1 + \ 4x_2 &\leq 24\,, \\ 3x_1 + \ x_2 &\leq 21, \\ x_1 + \ x_2 &\leq 9\,, \qquad x_1\,, \ x_2 \geq 0 \end{array}$$

23. Find an Initial Basic Feasible Solution by the North West Corner Method and proceed to solve:

	D1	D2	D3	Supply
O1	7	3	4	2
O2	2	1	3	3
03	3	4	6	5
Demand	4	1	5	

24. Find an optimal assignment schedule to minimize loss. Also find an alternate solution if it exists:

				Ter	rritory
		Ι	II	III	IV
	1	0	7	14	21
Salesman	2	12	17	22	27
	3	12	17	22	27
	4	18	22	26	30

25. Solve the zero sum game using Linear Programming method .

	Player B				
Player A	B ₁	B ₂	В3		
A ₁	1	-1	-1		
A ₂	-1	-1	3		
A ₃	-1	2	-1		

(2×15=30)