Reg No :
Name

MSc DEGREE (CSS) EXAMINATION , NOVEMBER 2020

 Second Semester

 Second Semester

 CORE - ME010203 - NUMERICAL SOLUTION WITH PYTHON

 CORE - ME010203 - NUMERICAL SOLUTION WITH PYTHON M Sc MATHEMATICS,M Sc MATHEMATICS (SF) 2019 Admission Onwards
 15F24FB2

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)
 Answer any eight questions.
 Weight 1 each.

1. Write a python program to factorize the expression $x^{2}-y^{2}$ also print the factors as the output
2. How can we plot graphs in Python?
3. Write a program to evaluate the limit $\lim _{\theta \rightarrow 0} \frac{\cos 2 \theta}{2 \theta}$ from the negative side.
4. Write a program to find the critical points of the function $f(x)=x^{5}-10 x^{3}-19$.
5. Write a program to evaluate the definite integral $\int_{0}^{5} x^{2}+2 x+4 d x$.
6. Explain the concept of curve fitting.
7. What is the recurrence relation to calculate $P_{n}(x)$ in Newton's method?
8. What are the roots (if exist) of the function $\tan x-x$?
9. Which procedure is known as backward substitution for 3×3 matrix?
10. Briefly explain the Trapezoidal rule.

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11.

Write a program that define a symbolic expression $x^{2}+2 x y+y^{2}$ and simplify it when x is $1-y$. What will be the output of this program?
12. Describe about solving a system of linear equations in Python with example.
(a) Write a program to find the derivative of the function $f(x)=x^{2} e^{2 x}+\sin 3 x$.
13. (b) Write a program to find the partial derivatives of the function $f(x, y)=\cos x y+3 x y$ with respect to x and y.
14. Write a program to calculate the length of the curve $f(x)=\sqrt{1-x^{2}}$ between $x=0$ and $x=1$.
15. Find the root of the equation $\mathrm{x} 3-\mathrm{x}-11=0$ using bisection method.
16. Explain Newton-Raphson method.
17.

Find the LU decomposition of the matrix $\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$
18. What you mean by general problem of numerical integration? Derive Newton Cotes formula
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
19. (a.) Write a Python program to print the series expnasion of $\tan ^{-1}(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$ where $-1 \leq x \leq 1$ upto n terms, and to calculate the sum at the point $x=0.5$, where n is taken as user input.
(b.) Write a Python program to input two expressions, calculate its product and display them
20. (a) Consider a car moving along a road. It accelerates uniformly such that the distance travelled, S, is given by the function $S(t)=5 t^{2}+2 t+8$. Write a program to find the instantaneous speed of the car at time t_{1}, using the Limit () function.
(b) Write a program to calculate the derivative of an input function with respect to an input variable.
21.
(a)Derive Lagrange's Interpolation formula.
(b) Using Lagrange's interpolating formula, find the form of the function $y(x)$ from the following table:

x	0	1	3
y	-12	0	12

22.

(a) Write the algorithm for the elimination phase in Gauss elimination method.
(b) Use Gauss elimination to solve the equation $A X=B$ where
$A=\left[\begin{array}{ccc}6 & -4 & 1 \\ -4 & 6 & -4 \\ 1 & -4 & 6\end{array}\right]$ and $B=\left[\begin{array}{c}-22 \\ -18 \\ 7\end{array}\right]$

