M Sc DEGREE (CSS) EXAMINATION, MARCH 2021

Third Semester
Faculty of Science
CORE - ME010303 - MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS
M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
167C3C33
Time: 3 Hours

Part A (Short Answer Questions)
 Answer any eight questions.
 Weight 1 each.

1. Find the Fourier Series for $f(x)=8 x, 0<x<2 \pi$
2. State Fourier Integral theorem and its exponential form.
3. Show that the existence of partial derivatives at any point, does not imply the existence of directional derivative thereat.
4. Define total derivative and Jacobian matrix.
5. Give matrix representation for a linear function $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$.
6. Define Jacobian determinant and find the Jacobian determinant for the function $f(z)=9 z+2 z^{2}$
7. For some integer $n \geq 1$, let f have a continuous $n^{\text {th }}$ derivative in the open interval (a, b). Also for some interior point c in $(a, b), f^{\prime}(c)=f^{\prime \prime}(c)=\ldots .$. but $f^{n}(c) \neq 0$ If n is even and $f^{n}(c)<0$ then prove that f has a local maximum at c
8. Define a Stationary point and a Saddle point.
9. Let $G(x)=\sum_{i \neq m} x_{i} e_{i}+g(x) e_{m}, x \in E$ be a primitive mapping and $\left(D_{m} g\right)(a) \neq 0$. Prove that $G^{\prime}(a)$ is invertible.
10. Define k - forms and explain its elementary properties.

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. State and prove Weierstrass Approxiamation Theorem for real valued and continuous functions on compact interval.
12. Let $R=(-\infty, \infty)$ and $f \in L(R), g \in L(R)$ and that either f or g is bounded on R. prove that the convolution integral $h(x)=\int_{-\infty}^{\infty} f(t) g$ for every x in R. Moreover if the bounded function f or g is continuous on R. Then h is also continuous on R and $h \in L(R)$.
13. Compute the gradient vector $\nabla f(x, y)$ at those points $(x, y) \in \mathbf{R}^{2}$ if
a. $f(x, y)=x^{2} y^{2} \log \left(x^{2}+y^{2}\right)$ if $(x, y) \neq(0,0), f(0,0)=0$.
b. $f(x, y)=x y \sin \left(x^{2}+y^{2}\right)$
14. a. State and prove mean value theorem.
b. If f is a real valued function on an open convex subset S of \mathbf{R}^{n} prove that $f(\mathbf{y})-f(\mathbf{x})=\nabla f(\mathbf{z})$. ($\left.\mathbf{y}-\mathbf{x}\right)$ for \mathbf{z} in the line segment joining
15. (a) Let A be an open subset of R^{n} and assume that $f: A \rightarrow R^{n}$ is continuous and has finite partial derivatives $D_{j} f_{i}$ on A. If f is one-to-one on A and if e x in A then prove that $f(A)$ is open.
(b) Let A be an open subset of R^{n} and assume that $f: A \rightarrow R^{n}$ has continuous partial derivatives $D_{j} f_{i}$ on A. If $J_{f}(x) \neq 0$ for all x in A then prove mapping.
16. Assume that the second order partial derivatives $D_{i, j} f$ exist in an n - ball $B(a)$ and are continuous at a, where a is a stationary point of f. Let $Q(t)=\frac{1}{2} f^{\prime \prime}(a ; t)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{i, j} f(a) t_{i} t_{j}$. Prove the following
(a) If $Q(t)>0$ for all $t \neq 0$, then f has a relative minimum at a.
(b) If $Q(t)<0$ for all $t \neq 0$, then f has a relative maximum at a.
(c) If $Q(t)$ takes both positive and negative values, then f has a saddle point at a.
17. For every $f \in C\left(I^{k}\right)$ prove that the order of integration is immaterial for $\int_{I^{k}} f(x) d x$.
18. If $\Phi(r, \theta, \phi)=(x, y, z)$ where $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$ and D is the $3-c e l l$ defined by $0 \leq r \leq 1,0 \leq \theta \leq$ then show that $\int_{\Phi} d x \wedge d y \wedge d z=\frac{4 \pi}{3}$.

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. State and prove the Convolution Theorem for Fourier Transforms.
20. Show that if \mathbf{g} is differentiable at \mathbf{a} and \mathbf{f} is differentiable at $\mathbf{b}=\mathbf{g}(\mathbf{a})$, then the composition function, $\mathbf{h}=\mathbf{f} o \mathbf{g}$ is differentiable at \mathbf{a} and $\mathbf{h}^{\prime}(\mathbf{a})=\mathbf{f}^{\prime}(\mathbf{b}) o \mathbf{g}^{\prime}(\mathbf{a})$. Also, express this result in matrix form.
21. Assume that one of the partial derivatives $D_{1} f, D_{2} f, \ldots D_{n} f$ exist at c and the remaining $n-1$ partial derivatives exist in some n - ball $B(c)$ and are co Prove that f is differentiable at c
22. State the partitions of unity theorem. Prove that if $f \in C\left(R^{n}\right)$ and the support of f lies in K, then $f=\sum_{i=1}^{s} \psi_{i} f$, where each $\psi_{i} f$ has its support in some V_{α}.

