

18001757

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2018

Third Semester

Faculty of Science

Branch I (A): Mathematics

MT 03 C11—MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. If $f \in L([0, p])$ and if f has period p, write the Fourier series generated by f.
- 2. Write the exponential form of Fourier integral theorem.
- 3. If $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x, y) = \begin{cases} x + y & \text{if } x = 0 \text{ or } y = 0 \\ 1 & \text{otherwise} \end{cases}.$$

Find $D_1 f(0,0)$ and $D_2 f(0,0)$.

- 4. Write the first order Taylor formula for a function $f: S \to \mathbb{R}^m$ which is differentiable at a point c.
- 5. State inverse function theorem.
- 6. If $f(x, y) = x^4 + y^4 4x^2y^2$. Verify that the mixed partial derivatives $D_{1,2} f$ and $D_{2,1} f$ are equal.
- 7. State Stoke's theorem.
- 8. Define a differential k-form.

 $(5 \times 1 = 5)$

Turn over

Part B

Answer any **five** questions. Each question has weight 2.

- 9. State and prove Weierstrass approximation theorem.
- 10. Show that if p > 0 and q > 0.

$$\int_0^1 x^{p-1} (1-x)^{q-1} dx = \frac{\lceil (p) \rceil (q)}{\lceil (p+q) \rceil}.$$

- 11. Assume that f is differentiable at c with total derivative \mathbf{T}_c . Prove that the directional derivative f'(c,n) exists for every n in \mathbf{R}^n and $\mathbf{T}_c(n) = f'(c,n)$.
- 12. Calculate all first-order partial derivatives and the directional derivative f'(x, n) for the function $f(x) = a \cdot x$ where a is a fixed vector in \mathbb{R}^n .
- 13. Let S be an open connected subset of \mathbb{R}^n and let $f: \mathbb{S} \to \mathbb{R}^m$ be differentiable at each point of S. If f'(c) = 0 for each $c \in \mathbb{S}$, prove that f is constant on S.
- 14. Find and classify the extremum values (if any) of $f(x, y) = x^2 + y^2 = x + y + xy$.
- 15. If ω and λ are K-and M-forms, respectively of class ξ' in E, show that $d\left(\omega \wedge \lambda\right) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge d\lambda.$
- 16. If $r(t) = (a\cos t, b\sin t) 0 \le t \le 2\pi$. Find $\int_r x dy$ and $\int_r y dx$

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. State and prove convolution theorem for Fourier transforms.
- 18. State and prove chain rule of differentiation.
- 19. (a) Compute the gradient vector $\nabla f(x,y)$ at those points (x,y) in \mathbb{R}^2 where it exists for the function $f(x,y) = xy \sin\left(\frac{1}{x^2+y^2}\right)$ if $(x,y) \neq (0,0)$, f(0,0) = 0.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $f(x, y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix Df(x, y).
- 20. Assume that one of the partial derivatives $D_1 f$, $D_2 f$ $D_n f$ exists at c and the remaining n-1 partial derivatives exist in some n-ball B(c) and are continuous at C. Prove that f is differentiable at C.
- 21. Let A be an open subset of \mathbb{R}^n and assume that $f: A \to \mathbb{R}^n$ has continuous partial derivatives $D_j f_i$ on A. If $J_r(x) \neq 0$ for all $x \in A$, prove that f is an open mapping.
- 22. Let E be an open set in \mathbb{R}^n , T is a ξ' mapping of E into an open set $V \subset \mathbb{R}^m$ and ω and λ be k and m forms in V respectively, prove that :

(a)
$$(\omega + \lambda)_T = {}^{\omega}T + {}^{\lambda}T$$
 if $k = m$.

(b)
$$(\omega \wedge \lambda)_T = {}^{\omega}T \wedge {}^{\lambda}T.$$

(c) $d({}^{\omega}T) = (d\omega)_{T}$ if ω is of class ξ' and T is of class ξ^{n} .

 $(3 \times 5 = 15)$

