M.Sc. DEGREE (C.S.S) EXAMINATION, NOVEMBER 2019
 First Semester
 Faculty of Science
 PHYSICS

Core - PH010101 - MATHEMATICAL METHODS IN PHYSICS - I

2019 Admission Onwards
 D6C877AC

Maximum Weight: 30
Time: 3 Hours

Part A (Short Answer Questions)
Answer any eight questions.
Weight 1 each.

1. Show that the vector field $\vec{V}=(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$ is solenoidal.
2. Give examples of orthogonal curvilinear coordinate systems. In each case, express rectangular coordinates as a function of the orthogonal curvilinear coordinates .
3. Find out the differential volume in cylindrical co-ordinates.
4. Verify Schwarz inequality for the vectors $(1,-3,4)$ and $(2,2,-5)$.
5. What are the characteristics of Poisson distribution? Mention any one practical application.
6. If two matrices A and B are diagonal, show that A and B commute.
7. Show that the products of two unitary matrices are also unitary.
8. If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$, find A^{2} using Cayley - Hamilton theorem.
9. What is meant by line element? How is it related with a metric tensor?
10. Given two tensors, prove that their difference is also a tensor.

Part B (Short Essay/Problems)
 Answer any six questions.
 Weight 2 each.

11. Find the scalar potential for the gravitational force on a unit mass m.
12. Express $\nabla^{2} \phi$ in curvilinear coordinates.
13. Find the inner product of the functions $\sin \theta$ and $\cos \theta$ over the interval 0 to 2π.
14. A vector represented by $|u\rangle=\left(\begin{array}{c}x \\ 2 x \\ -2 x\end{array}\right)$, where x is an arbitrary number. Find x such that $|u\rangle$ is normalized.
15. Find the eigen values \backslash and the corresponding eigen vectors of the matrix $\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right]$.
16. Solve by matrix method, $2 x+3 y=1,5 x+7 y=3$.
17. Show that the velocity of a fluid is a tensor, but its acceleration is not.
18. Determine the Christoffel symbols of the first kind in (a) rectangular, (b) cylindrical and (c) spherical coordinates.

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. State and prove Stoke's Theorem.
20. Give the mathematical form and properties of normal distribution. Explain the main features of normal distribution curve.
21.

Find the inverse of the matrix $\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ by Gauss- Jordan method.
22. Find the differential equations for the geodesic in (a) cylindrical and (b) spherical coordinates.
($2 \times 5=10$ weightage)

