M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021 First Semester
 CORE - PH010101 - MATHEMATICAL METHODS IN PHYSICS - I
 M Sc PHYSICS,M.Sc.Space Science
 2019 ADMISSION ONWARDS
 D49C59D3

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)
 Answer any eight questions.

Weight 1 each.

1. Find $\operatorname{div} \vec{F}$ and curl \vec{F} where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
2. State Stoke's Theorem.
3. Obtain the scale factors in cylindrical Co-ordinates.
4. Using inner product explain normalization and orthogonality of vectors.
5. Can basis be unique for a linear vector space? Explain.
6. Show that diagonal elements of a Hermitian matrix are real.
7. Show that the trace of a matrix remains invariant under similarity transformation.
8. Prove that the characteristic roots of a real orthogonal matrix are of modulus unity.
9. Contrast between dummy index and free index in mathematical notations.
10. Prove that the covariant derivative of $g_{j k}$ is zero.

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Express $\nabla \cdot \vec{A}$ in orthogonal curvilinear coordinates.
12. Express Laplacian operator in spherical polar and cylindrical co-ordinates.
13. A dice is rolled 9 times. Find the probabilities of having a 4 upwards (a) 3 times and (b) less than 4 times.
14. Summarize the essential features of normal distribution.
15.

Obtain the direct sum of the matrices $A=[a], B=\left[\begin{array}{ll}b & c \\ d & e\end{array}\right]$ and $C=\left[\begin{array}{ccc}f & g & h \\ i & j & k \\ x & y & z\end{array}\right]$.
16. Find the inverse of the matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ by Gauss- Jordan method.
17. If $A_{r}^{p q}$ is a tensor, show that $A_{r}^{p r}$ is a tensor of rank one.
18. Determine the Christoffel symbols of the first and second kind in elliptical cylindrical coordinates.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. Prove that a spherical coordinate system is orthogonal. Express the velocity and acceleration of a particle in spherical coordinates.
20. Prove the Cauchy-Schwarz inequality.
21. Solve the following equations by Gauss elimination method, $x+y+z+w=0$.

$$
\begin{aligned}
& x+y+z-w=0 \\
& x+y-z+w=0 \\
& x-y+z+w=0
\end{aligned}
$$

22. Find (a) g and (b) $g^{j k}$ corresponding to $d s^{2}=5\left(d x^{1}\right)^{2}+3\left(d x^{2}\right)^{2}+4\left(d x^{3}\right)^{2}-6 d x^{1} d x^{2}+4 d x^{2} d x^{3}$. ($2 \times 5=10$ weightage)
