MSc DEGREE (CSS) EXAMINATION , JANUARY 2022

 Second Semester

 Second Semester
 CORE - PH010201 - MATHEMATICAL METHODS IN PHYSICS-II
 M Sc PHYSICS,M.Sc.SPACE SCIENCE
 2019 Admission Onwards
 421C74D1

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Find the analytic function $f(z)=u(x, y)+i v(x, y)$ in which $v(x, y)=e^{-y} \sin x$.
2. Evaluate using Cauchy's integral formula, $\oint_{c} \frac{z^{3}}{(z-1)^{3}} d z$, where c is the circle $|z|=3$.
3. Classify the singularities and calculate the reside for $f(z)=\frac{\sin z}{z^{4}}$.
4. Give the Fourier integral representation for an odd function.
5. Discuss any two properties of Inverse Fourier transform?
6. Obtain the Laplace transform of a periodic function with period T.
7. Evaluate $\int_{0}^{\infty} e^{-x^{4}} d x$.
8. If $H_{n}(x)$ represents Hermite polynomial of degree n, show that $H_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{n!}$.
9. Write down the three dimensional Laplace equation .Mention any two areas of its application.
10. Write down the Helmholtz equation in three different coordinate systems.

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Verify Cauchy's theorem for the integral of z^{2} taken over the boundary of the rectangle with vertices $-1-i, 1-i, 1+i,-1+i$.
12. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$ using contour integration
13. Expand the function $f(x)=x^{2}, 0<x<2 \pi$ as a series of sines and cosines.
14. Give the momentum representation of hydrogen atom using Fourier transform.
15. Prove that Beta function $\beta(a, b)$ is symmetric in its arguments.
16. If $J_{n}(x)$ is $n^{t h}$ order Bessel function, show that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$.
17. If $P_{n}(x)$ is Legendre polynomial of degree n, show that $x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x)$.
18. Explain the method of Green's function for solving nonhomogeneous differential equations.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. a) Obtain Laurent's series expansion of a complex function. b) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ as a Laurent series valid for $(a) 1<|z|<3 \quad(b) 0<|z+1|<2 \quad(c)|z|>3$
20. Derive Lapace transform of $n^{\text {th }}$ order derivative of a function. Also solve for damped harmonic oscillator using Laplace transform.
21. Discuss Rodrigues Formula, Orthogonality relation and one recurrence relation of Associated Legendre Polynomial.
22. Solve the Heat conduction equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{2} \frac{\partial u}{\partial t}$ over $0<x<3, t>0$ for the boundary conditions $u(0, t)=u(3, t)=0$ and the initial condition $u(x, 0)=5 \sin (4 \pi x)$

