

QP CODE: 22100166

Reg No : Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, JANUARY 2022

Fifth Semester

CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

6583E7F5

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries 2 marks.

- 1. Prove that if A is a set with m elements and B is a set with n elements, Then $A \cup B$ has m + n elements?
- 2. Prove that $a. a = a \implies a = 0 \text{ or } a = 1$?
- 3. If t > 0 prove that there exist an $n_t \in N$ such that $0 < rac{1}{n_t} < t$
- 4. Define periodic and terminating decimals? Is every rational terminating? Justify?
- 5. Prove that the sequence (0,2,0,2,0,2,...) does not converge.
- If X = (x_n) is a sequence of real numbers, (a_n) is a sequence of positive real numbers such that lim(a_n) = 0 and if for some positive constant C > 0 and m *ε* N we have |x_n − x| < Ca_n forevery n ≥m, then prove that lim(x_n) = x.
- 7. Let X = (2, 4, 6,..., 2n,...) and Y = $(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots)$. Find X + Y and X.Y.
- 8. Write a short note on Euler number.
- 9. Let (x_n) and (y_n) be two sequences of real numbers and suppose that $x_n \le y_n$ for all n. Prove that if $\lim y_n = -\infty$ then $\lim x_n = -\infty$.

Page 1/3

- 10. State the root test for the absolute convergence of a series in R.
- 11. State Abel's test for the convergence of series.

12. Let A be a set consisting of all rational numbers in [0, 1]. Then what are the cluster points of A.

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Prove the following, For all $a, b \in R$ (a.) $|a + b| \le |a| + |b|$ (b.) $||a| - |b|| \le |a - b|$ (c.) $|a - b| \le |a| + |b|$
- 14. If $I_n = [a_n, b_n], n \in N$ be a nested sequence of closed, bounded intervals such that the lengths $b_n - a_n$ of I_n satisfy $Inf\{b_n - a_n : n \in N\} = 0$, then Prove that the number η contained in $I_n \forall n$ is unique?
- 15. Let X = (x_n) be a sequence of non-negative real numbers. Prove that the sequence $(\sqrt{x_n})$ of positive square roots converges to \sqrt{x} .
- 16. State and prove Monotone Subsequence Theorem.
- 17. State and prove Cauchy Convergence Criterion.
- 18. Prove that if $\sum x_n$ is convergent, then any series obtained from it by grouping the terms is also convergent.
- 19. Discuss the convergence of the series whose nth term is $\frac{n^n}{(n+1)^{n+1}}$
- 20. Let $f : A \to \mathscr{R}$ and let $c \in \mathscr{R}$ be a cluster point of A. If $\lim_{x \to c} f$ exists, Prove that $\lim_{x \to c} |f| = |\lim_{x \to c} f|$.
- 21. Give an example of a function that has a left-hand limit but not a right-hand limit at a point.

(6×5=30)

Part C

Answer any two questions.

Each question carries **15** marks.

- 22. Prove that there exist a real number x such that $x^2 = 2$?
- 23. (a) State and prove Monotone Convergence Theorem. (b) Let Z = (z_n) be the sequence defined as $z_1 = 1$ and $z_{n+1} = \sqrt{2z_n}$ forevery n. Show that $\lim(z_n) = 2$.

24. (a) State and prove Comparison Test for the convergence of series. (b) Discuss the convergence of

•
$$\sum_{1}^{\infty} \frac{1}{n^2+n}$$

• $\sum_{1}^{\infty} \frac{1}{n!}$

- 25. (a) Let $A\subseteq \mathscr{R}$, $f,g:A o \mathscr{R}$, and let $c\in \mathscr{R}$ be a cluster point of A, Suppose that $f(x) \leq g(x)$ for all $x \in A$, x
 eq c, Then prove the following

 - If $\lim_{x\to c} f = \infty$, then $\lim_{x\to c} g = \infty$. If $\lim_{x\to c} g = -\infty$, then $\lim_{x\to c} f = -\infty$.

(b) Give an example of a function that has a left-hand limit but not a right-hand limit at a point.

(c) Evaluate the limit or show that it do not exist " $\lim_{x \to 1} rac{x}{x-1}$ where x
eq 1.

(2×15=30)