B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS,

JANUARY 2022
Fifth Semester

CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science \& B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards
6583E7F5
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Prove that if A is a set with m elements and B is a set with n elemnents, Then $A \cup B$ has $m+n$ elements?
2. Prove that $a . a=a \Longrightarrow a=0$ or $a=1$?
3. If $t>0$ prove that there exist an $n_{t} \in N$ such that $0<\frac{1}{n_{t}}<t$
4. Define periodic and terminating decimals? Is every rational terminating? Justify?
5. Prove that the sequence $(0,2,0,2,0,2, \ldots)$ does not converge.
6. If $X=\left(x_{n}\right)$ is a sequence of real numbers, $\left(\mathrm{a}_{\mathrm{n}}\right)$ is a sequence of positive real numbers such that $\lim \left(\mathrm{a}_{\mathrm{n}}\right)=0$ and if for some positive constant $\mathrm{C}>0$ and $\mathrm{m} \epsilon \mathrm{N}$ we have $\left|x_{n}-x\right|<C a_{n}$ forevery $\mathrm{n} \geq \mathrm{m}$, then prove that $\lim \left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}$.
7. Let $X=(2,4,6, \ldots, 2 n, \ldots)$ and $Y=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right)$. Find $X+Y$ and $X . Y$.
8. Write a short note on Euler number.
9. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences of real numbers and suppose that $x_{n} \leq y_{n}$ for all n. Prove that if $\lim y_{n}=-\infty$ then $\lim x_{n}=-\infty$.
10. State the root test for the absolute convergence of a series in R.
11. State Abel's test for the convergence of series.
12. Let A be a set consisting of all rational numbers in $[0,1]$. Then what are the cluster points of A.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Prove the following, For all $a, b \in R$
(a.) $|a+b| \leq|a|+|b|$
(b.) $||a|-|b|| \leq|a-b|$
(c.) $|a-b| \leq|a|+|b|$
14. If $I_{n}=\left[a_{n}, b_{n}\right], n \in N$ be a nested sequence of closed, bounded intervals such that the lengths $b_{n}-a_{n}$ of I_{n} satisfy $\operatorname{Inf}\left\{b_{n}-a_{n}: n \in N\right\}=0$, then Prove that the number η contained in $I_{n} \forall n$ is unique?
15. Let $X=\left(x_{n}\right)$ be a sequence of non-negative real numbers. Prove that the sequence $\left(\sqrt{x_{n}}\right)$ of positive square roots converges to \sqrt{x}.
16. State and prove Monotone Subsequence Theorem.
17. State and prove Cauchy Convergence Criterion.
18. Prove that if $\sum x_{n}$ is convergent, then any series obtained from it by grouping the terms is also convergent.
19. Discuss the convergence of the series whose nth term is $\frac{n^{n}}{(n+1)^{n+1}}$
20. Let $f: A \rightarrow \mathscr{R}$ and let $c \in \mathscr{R}$ be a cluster point of A. If $\lim _{x \rightarrow c} f$ exists, Prove that $\lim _{x \rightarrow c}|f|=\left|\lim _{x \rightarrow c} f\right|$.
21. Give an example of a function that has a left-hand limit but not a right-hand limit at a point.

Part C

Answer any two questions.
Each question carries 15 marks.
22. Prove that there exist a real number x such that $x^{2}=2$?
23. (a) State and prove Monotone Convergence Theorem.
(b) Let $Z=\left(z_{n}\right)$ be the sequence defined as $z_{1}=1$ and $z_{n+1}=\sqrt{2 z_{n}}$ forevery n. Show that $\lim \left(z_{n}\right)=2$.
24. (a) State and prove Comparison Test for the convergence of series. (b) Discuss the convergence of

- $\sum_{1}^{\infty} \frac{1}{n^{2}+n}$
- $\sum_{1}^{\infty} \frac{1}{n!}$

25. (a) Let $A \subseteq \mathscr{R}, f, g: A \rightarrow \mathscr{R}$, and let $c \in \mathscr{R}$ be a cluster point of A, Suppose that $f(x) \leq g(x)$ for all $x \in A, x \neq c$, Then prove the following

- If $\lim _{x \rightarrow c} f=\infty$, then $\lim _{x \rightarrow c} g=\infty$.
- If $\lim _{x \rightarrow c} g=-\infty$, then $\lim _{x \rightarrow c} f=-\infty$.
(b) Give an example of a function that has a left-hand limit but not a right-hand limit at a point.
(c) Evaluate the limit or show that it do not exist $\lim _{x \rightarrow 1} \frac{x}{x-1}$ where $x \neq 1$.

