Turn Over

Reg No	:	
Name	:	

BSc DEGREE (CBCS) EXAMINATION, FEBRUARY 2020

Fifth Semester

Core Course - MM5CRT01 - MATHEMATICAL ANALYSIS

B.Sc Computer Applications Model III Triple Main ,B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

E15905D3

Time: 3 Hours

Maximum Marks :80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Prove that $z+a=a, \forall z,a\in R$ then z=0 ?
- 2. Define ϵ neighbourhood of a point? If x belongs to $V_{\epsilon}(a)$ for all $\epsilon > 0$ then prove that x = a?
- 3. If t > 0 prove that there exist an $n_t \in N$ such that $0 < rac{1}{n_t} < t$
- 4. Justify the validity of the following statement with proper reasoning "A positive real number is rational then its decimal expansion is periodic"
- 5. Find $lim(\frac{\sqrt{n}-1}{\sqrt{n}+1})$.
- 6. Define monotone increasing and monotone decreasing sequences. Give examples.
- Prove that if a sequence X = (x_n) converges to x, then every subsequence of X also converges to x.
- 8. Prove that every Cauchy sequence of real numbers is bounded.
- 9. If c > 1, prove that $\lim (c^n) = +\infty$.
- 10. Give an example of a convergent series of Real Numbers which is not absolute convergent.

- 11. Test the convergence of $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{(n^2+1)}$
- 12. Define the right-hand and left-hand infinite limits.

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. State and prove three equivalent definitions for a countable set ?
- 14. Let S be a nonempty subset of real numbers that is bounded below, Prove that $Inf S = -Sup\{-s: s \in S\}$?
- 15. Prove that $lim(\frac{1}{n^2+1}) = 0$.
- 16. Prove that $\lim (n^{1/n}) = 1$.
- 17. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converges to x and y respectively. Prove that the sequences X.Y converges to xy.
- 18. State and prove the comparison test for the convergence of series. Using this test, show that $\sum_{1}^{\infty} \frac{1}{n^2+n}$ is convergent.
- 19. State and prove the root test for the absolute convergence of a series in R.
- 20. Show that $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist in \mathscr{R} .
- 21. Let f, g be defined on $A \subseteq \mathscr{R}$ and c be a cluster point of A. If f is bounded on a neighborhood of c and $\lim_{x \to c} g = 0$, then prove that $\lim_{x \to c} fg = 0$.

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. (a.) State and Prove Nested interval property?
 - (b.) Prove that the set of real numbers is not countable?
- 23. (a) State and prove Monotone Convergence Theorem.
 (b) Prove that for any real number a > 0, there exists a sequence (s_n) of real numbers that converges to √a.

- 24.
- 1. When an alternating series can be convergent? Give an example of an alternating convergent series.
- 2. State and prove Abel's Test.

25. (a) Let $A\subseteq \mathscr{R}, f,g:A o \mathscr{R}$, and let $c\in \mathscr{R}$ be a cluster point of A, Suppose that $f(x) \leq g(x)$ for all $x \in A$, x
eq c, Then prove the following

- $\begin{array}{ll} \text{If } \lim_{x \to c} f = \infty \text{, then } \lim_{x \to c} g = \infty \text{.} \\ \text{If } \lim_{x \to c} g = -\infty \text{, then } \lim_{x \to c} f = -\infty \text{.} \end{array}$

(b) Give an example of a function that has a right-hand limit but not a left-hand limit at a point.

(c) Evaluate the limit or show that it do not exist " $\lim_{x o 1} rac{x}{x-1}$ where x
eq 1.

(2×15=30)