B.Sc DEGREE (CBCS) EXAMINATION, FEBRUARY 2021 Fifth Semester
 Core Course - MM5CRT01 - MATHEMATICAL ANALYSIS

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science, B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards
C9A38860
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. State ordering property of real numbers? Is the set of all rational numbers ordered? Justify.
2. Find all $x \in R$ such that $|x-1|>|x+1|$?
3. Does $f(x) \leq g(x) \forall x \in D$ imply that $\operatorname{Sup} f(D) \leq \operatorname{Inf} g(D)$? Give proper reasoning?
4. Define Nested intervals? Is the interval $I_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right), n \in N$ nested?
5. Prove that the sequence $\left(x_{n}\right)=\left((-1)^{n}\right)$ does not converge.
6. Prove that a convergent sequence of real numbers is bounded.
7. Find $\lim \left(\frac{n+1}{n \sqrt{n}}\right)$.
8. Using Monotone Convergence Theorem, prove that $\lim \left(\frac{1}{\sqrt{n}}\right)=0$.
9. Use the recurrance relation of $\mathrm{n}^{\text {th }}$ term of a sequence that converges to \sqrt{a} to find the value of $\sqrt{5}$ correct to 4 decimal places.
10. State Abel's Lemma.
11. Test the convergence of $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{\left(n^{2}+1\right)}$
12. Show that $\lim _{x \rightarrow \infty} x^{n}=\infty$ for $n \in \mathscr{N}$.

Part B

13. Prove that If A, B are bounded sets then $\operatorname{Sup}(A+B)=\operatorname{Sup} A+\operatorname{Sup} B$ where
$A+B=\{a+b: a \in A, b \in B\}$
14. Prove that $x \in[0,1]$ then the binary representation of x forms a sequnce consisting only 0,1 ?
15. If $\mathrm{c}>0$, prove that $\lim \left(\mathrm{c}^{1 / \mathrm{n}}\right)=1$.
16. Prove that $(\sin n)$ is divergent.
17. Let $\left(\mathrm{x}_{\mathrm{n}}\right)$ and $\left(\mathrm{y}_{\mathrm{n}}\right)$ be two sequences of real numbers and suppose that $\mathrm{x}_{\mathrm{n}} \leq \mathrm{y}_{\mathrm{n}}$ for all n . Prove that
(a) if $\lim x_{n}=+\infty$ then $\lim y_{n}=+\infty$.
(b) if $\lim y_{n}=-\infty$ then $\lim x_{n}=-\infty$.
18. Prove that the geometric series $\sum_{n=0}^{n=\infty} r^{n}$ converges if and only if $|r|<1$.
19. If $\left(a_{n}\right)$ is a decreasing sequence of strictly positive numbers and if $\sum a_{n}$ is convergent, show that $\lim n a_{n}=0$.
20. Show that $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist.
21. Let $A \subseteq \mathscr{R}, f, g: A \rightarrow \mathscr{R}, c \in \mathscr{R}$ be a cluster point of A. If $f(x) \leq g(x)$ for all $x \in A, x \neq c$, Then prove the following
(a) If $\lim _{x \rightarrow c} f=\infty$, then $\lim _{x \rightarrow c} g=\infty$.
(b) If $\lim _{x \rightarrow c} g=-\infty$, then $\lim _{x \rightarrow c} f=-\infty$.

Part C

Answer any two questions.
Each question carries 15 marks.
22. Prove the denumerability of the following sets
(a.) The set of all rational numbers Q
(b) The set $N \times N$, where N is the set of all natural numbers
23. (a) State and prove Cauchy Convergence Criterion.
(b) Let $\mathrm{X}=\left(\mathrm{x}_{\mathrm{n}}\right)$ be the sequence defined as $\mathrm{x}_{1}=1, \mathrm{x}_{2}=2$ and $x_{n}=\frac{x_{n-2}+x_{n-1}}{2}$ for $\mathrm{n}>2$. Prove that $\lim X=\frac{5}{3}$.
24. State and prove Raabe's test. Use this test to study the convergence of $\sum_{1}^{\infty}\left(\frac{n}{\left(n^{2}+1\right)}\right)$.
25. (a) Let $A \subseteq \mathscr{R}, f: A \rightarrow \mathscr{R}$ and let $c \in \mathscr{R}$ be a cluster point of A. If $a \leq f(x) \leq b$ for all $x \in A$, $x \neq c$, and if $\lim _{x \rightarrow c} f$ exists, Then prove that $a \leq \lim _{x \rightarrow c} f \leq b$.
(b) Check whether the following limits exist or not. Give explanations
(1) $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$
(2) $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)$

