

.....

:

:

Name

Reg No

B.Sc DEGREE (CBCS) EXAMINATION, FEBRUARY 2021

Fifth Semester

Core Course - MM5CRT01 - MATHEMATICAL ANALYSIS

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science, B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

C9A38860

Time: 3 Hours

QP CODE: 21100166

Max. Marks: 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. State ordering property of real numbers? Is the set of all rational numbers ordered? Justify.
- 2. Find all $x \in R$ such that |x 1| > |x + 1|?
- 3. Does $f(x) \le g(x) \ \forall x \in D$ imply that $Sup \ f(D) \le Inf \ g(D)$? Give proper reasoning?
- 4. Define Nested intervals? Is the interval $I_n = \left(-rac{1}{n}, rac{1}{n}
 ight), n \in N$ nested?
- 5. Prove that the sequence $(x_n) = ((-1)^n)$ does not converge.
- 6. Prove that a convergent sequence of real numbers is bounded.
- 7. Find $lim(\frac{n+1}{n\sqrt{n}})$.
- 8. Using Monotone Convergence Theorem, prove that $lim(\frac{1}{\sqrt{n}}) = 0$.
- 9. Use the recurrance relation of nth term of a sequence that converges to \sqrt{a} to find the value of $\sqrt{5}$ correct to 4 decimal places.
- 10. State Abel's Lemma.
- 11. Test the convergence of $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{(n^2+1)}$
- 12. Show that $\lim_{x\to\infty} x^n = \infty$ for $n \in \mathscr{N}$.

(10×2=20)

Part B

Answer any **six** questions.

Each question carries 5 marks.

-

Page 1/2

- 13. Prove that If A, B are bounded sets then Sup (A + B) = Sup A + Sup B where $A + B = \{a + b : a \in A, b \in B\}$
- 14. Prove that $x \in [0,1]$ then the binary representation of x forms a sequnce consisting only 0, 1 ?
- 15. If c > 0, prove that $\lim (c^{1/n}) = 1$.
- 16. Prove that (sin n) is divergent.
- 17. Let (x_n) and (y_n) be two sequences of real numbers and suppose that x_n ≤ y_n for all n. Prove that
 (a) if lim x_n = +∞ then lim y_n = +∞.
 (b) if lim y_n = -∞ then lim x_n = -∞.

18. Prove that the geometric series $\sum_{n=0}^{n=\infty} r^n$ converges if and only if |r| < 1.

- 19. If (a_n) is a decreasing sequence of strictly positive numbers and if $\sum a_n$ is convergent, show that $\lim na_n = 0$.
- 20. Show that $\lim_{x\to 0} sgn(x)$ does not exist.
- 21. Let A ⊆ 𝔅, f, g : A → 𝔅, c ∈ 𝔅 be a cluster point of A. If f(x) ≤ g(x) for all x ∈ A, x ≠ c, Then prove the following
 (a) If lim f = ∞, then lim g = ∞.
 (b) If lim g = -∞, then lim f = -∞.

(6×5=30)

Part C

Answer any **two** questions.

Each question carries 15 marks.

- 22. Prove the denumerability of the following sets
 - (a.) The set of all rational numbers Q
 - (b) The set $N \times N$, where N is the set of all natural numbers
- 23. (a) State and prove Cauchy Convergence Criterion.
 (b) Let X = (x_n) be the sequence defined as x₁ = 1, x₂ = 2 and x_n = (x_{n-2}+x_{n-1}/2) for n > 2. Prove that lim X = (5/3).
- 24. State and prove Raabe's test. Use this test to study the convergence of $\sum_{1}^{\infty} \left(\frac{n}{(n^2+1)}\right)$.
- 25. (a) Let $A \subseteq \mathscr{R}$, $f : A \to \mathscr{R}$ and let $c \in \mathscr{R}$ be a cluster point of A. If $a \leq f(x) \leq b$ for all $x \in A$, $x \neq c$, and if $\lim_{x \to c} f$ exists, Then prove that $a \leq \lim_{x \to c} f \leq b$.
 - (b) Check whether the following limits exist or not. Give explanations

(1) $\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$ (2) $\lim_{x \to 0} x\cos\left(\frac{1}{x}\right)$

 $(2 \times 15 = 30)$

