\qquad

M.Sc. DEGREE (C.S.S.) EXAMINATION, DECEMBER 2018

First Semester

Faculty of Science
Branch II : Physics-(A)-Pure Physics
PH1C03-ELECTRODYNAMICS
(2012 Admission onwards)

Time : Three Hours

Maximum Weight : 30

Part A

Answer any six questions.
Each question carries 1 weight.

1. State and explain Poynting theorem.
2. What is Maxwell's stress tensor?
3. Write note on superposition of waves.
4. What are four-vector potentials?
5. Show that anti-symmetry of a tensor is preserved by Lorentz transformation.
6. Show that plane wave solutions to Maxwell's equations in free space are transverse waves .
7. What are the essential differences between transmission line and ordinary electric network ?
8. State and explain Lorentz gauge condition.
9. What are Jefimenkos equations?
10. What is meant by radiative reaction?

$$
(6 \times 1=6)
$$

Part B

Answer any four questions.
Each question carries 2 weight.
11. Obtain the equation of continuity from Lorentz gauge condition.
12. A uniformly charged sphere whose radius is a and charge density ρ, rotates with a constant angular velocity ω. Calculate the magnetic flux density \mathbf{B} at the centre of the sphere.

Turn over
13. Show that $c^{2} \mathrm{~B}^{2}-\mathrm{E}^{2}$ is invariant under Lorentz transformation.
14. The constitution parameter for aluminium are $\mu_{r}=1, \varepsilon_{r}=1$ and $\sigma=3.54 \times 10^{7} \mathrm{mho} / \mathrm{m}$. Find the skin depth in aluminium for the frequency 71.5 MHz .
15. A rectangular waveguide has a breadth 10 cm . Find the wavelength for a signal of frequency 2.5 GHz for the dominant mode.
16. An antenna of length L carries alternating current of angular frequency ω. Treating it as an oscillating dipole, determine the total power radiated.

$$
(4 \times 2=8)
$$

Part C

Answer all questions.
Each question carries 4 weight.
17. (a) Discuss the magnetostatic boundary conditions.

Or

(b) Describe the propagation of electromagnetic waves in a non-conducting medium.
18. (a) Derive Maxwell's equations in covariant four tensor form and give significance.

Or

(b) Discuss with necessary theory the behaviour of motion of charged particles in uniform electric and magnetic fields.
19. (a) Obtain the intensity of electric field at a point in the radiation zone emitted from an electric dipole.

Or

(b) Derive an expression for the rate of radiation of energy from an accelerated charge at low velocity.
20. (a) Discuss the propagation of electromagnetic waves in a rectangular waveguide in TE mode.

> Or
(b) Explain in detail about radiation from a quarter wave monopole.

$$
(4 \times 4=16)
$$

