M.Sc. DEGREE (C.S.S) EXAMINATION, NOVEMBER 2019

First Semester

Faculty of Science
MATHEMATICS

Core - ME010102 - LINEAR ALGEBRA

2019 Admission Onwards
729B2BCA
Time: 3 Hours
Maximum Weight :30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Define vector space. Is \mathbb{R} a vector space over \mathbb{C} ?
2. Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.
3. Find two linear operators T and U on R^{2} such that $U T=0$, but $T U \neq 0$.
4. Prove that if F is any field then the n -tuple space F^{n} and the space $F^{n \times 1}$ of all $n \times 1$ matrices are isomorphic.
5. Define dual space and double dual space of a vector space.
6. Prove that a linear combination of n-linear functions is n-linear.
7. Let D be a 2-linear function with the property that $D(A)=0$ for all 2×2 matrices A over K having equal rows. Then show that D is alternating.
8. Use Cramer's Rule to solve

$$
\begin{aligned}
& x+2 y+3 z=17 \\
& 3 x+2 y+z=11 \\
& x-5 y+z=-5
\end{aligned}
$$

9. Find the characteristic values, if any, of the linear operator T on \mathbb{R}^{2} which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
Let V be a finite dimensional vector space and let W_{1}, \cdots, W_{k} be subspaces of V such that $V=W_{1} \oplus \cdots \oplus W_{k}$. Prove that any vector $\alpha \in V$ can be uniquely represented as a sum $\alpha=\alpha_{1}+\cdots+\alpha_{k}$ where $\alpha_{i} \in W_{i}$

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Suppose P is an $n \times n$ invertible matrix over F. Let V be an n-dimensional vector space over F, and let ${ }^{\mathcal{B}}$ be an ordered basis of V . Then show that there is a unique ordered basis for V such that (i) $[\alpha]_{\mathcal{B}}=P[\alpha]_{\mathcal{B}^{\prime}}$ and (ii) $[\alpha]_{\mathcal{B}^{\prime}}=P^{-1}[\alpha]_{\mathcal{B}}$ for every vector α in V .
12. Show that row-equivalent matrices have same row space.
13. If $A \in F^{m \times n}$ prove that $\operatorname{row} \operatorname{rank}(A)=\operatorname{column} \operatorname{rank}(A)$.

If T is a linear on R^{3} defined as
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)$, find the matrix of T in the standard ordered basis of R^{3}.
15. Let V and W be finite dimensional vector spaces over the field F and $T: V \rightarrow W$ is a linear transformation. Prove that Range T^{t} is the annihilator of the null space of T.
16. If A is a 2×2 matrix over a field, prove that $\operatorname{det}(I+A)=1+\operatorname{det} A$ if and only if trace $(A)=0$.
17. Let T be a linear operator on \mathbb{R}^{3} which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Find an invertible matrix P such that the matrix $D=P^{-1} A P$ is a diagonal matrix.
18.

Let a, b and c be elements of a field F and $A=\left[\begin{array}{ccc}0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a\end{array}\right]$ be the matrix over F. Prove that the characteristic and minimal polynomial for A is $x^{3}-a x^{2}-b x-c$

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19. (a) Let W be the set of all $(x 1, x 2, x 3, x 4, x 5)$ in \mathbb{R}^{5} which satisfy

$$
\begin{aligned}
& 2 x 1-x 2+\frac{4}{3} \times 3-x 4=0 \\
& x 1+\frac{2}{3} \times 3-x 5=0 \\
& 9 \times 1-3 \times 2+6 x 3-3 x 4-3 \times 5=0
\end{aligned}
$$

Find a finite set of vectors which spans W.
(b) Let V be the vector space of all functions from $\mathbb{R}^{\text {into }}{ }^{\mathbb{R}}$; let Ve be the subset of even functions and let V o be the subset of odd functions.
(i) Prove that $V e$ and $V o$ are subspaces of V.
(ii) Prove that $\mathrm{Ve}+\mathrm{Vo}_{\mathrm{o}}=\mathrm{V}$.
(iii) Prove that $\mathrm{Ve} \cap \mathrm{Vo}=\{0\}$.
20.

Let V be a finite dimensional vector space over the field F. For any subspace W of V prove that $\operatorname{dim} W+\operatorname{dim} W^{0}=\operatorname{dim} V$
21. Let K be a commutative ring with identity and let n be a positive integer. Then prove that there is precisely one determinant function on the set of $n \times n$ matrices over K, and it is the function defined by $\operatorname{det}(\mathrm{A})=\sum_{\sigma} \operatorname{sgn}(\sigma) A\left(1, \sigma_{1}\right) \ldots A\left(n, \sigma_{n}\right)$ Knxn , then prove that for each $n \times n$ matrix $A, D(A)=(\operatorname{det} A) D(I)$.
22. 1. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F
2. Is the marix A similar over the field of real numbers to a triangular matrix where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
2 & -2 & 2 \\
2 & -3 & 2
\end{array}\right]
$$

