\qquad
\qquad

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021

First Semester
CORE - ME010102 - LINEAR ALGEBRA
M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
00ADD934
Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)
 Answer any eight questions.

Weight 1 each.

1. Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers. Define $(\mathrm{x}, \mathrm{y})+\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{x}+\mathrm{x}_{1}, \mathrm{y}+\mathrm{y}_{1}\right)$ and $c(x, y)=(c x, y)$. Is V, with these operations, a vector space over the field of real numbers?
2. Is the vector $(3,-1,0,-1)$ in the subspace of \mathbb{R}^{4} spanned by the vectors $(2,-1,3,2),(-1,1,1,-3)$, and $(1,1,9,-5)$?
3. Show that the space C of complex numbers and R^{2} are isomorphic, considering as vector spaces over R.
4. If $T: C^{2} \rightarrow C^{2}$ is a linear operator defined as $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$,find the matrix of T in the standard ordered basis for C^{2}.
5. Prove that the transpose of a linear transformation is also linear.
6. If D is a 2-linear function with the property that $D(A)=0$ for all 2×2 matrices A over K having equal rows, then show that D is alternating.
7.

Prove that the determinant of the Vandermonde matrix $\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]$ is $(b-a)(c-a)(c-b)$.
8. Write any 4 properties of the determinant function on $K^{n x n}$, where K is a commutative ring with identity.
9. Find the characteristic values, if any, of the linear operator T on \mathbb{R}^{2} which is represented in the standard ordered basis by the $\operatorname{matrix} A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
10. Let W be an invariant subspace for T. Prove that the characteristic polynomial of the restriction operator T_{W} divides the characteristic polynomial of T.

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Let V be the vector space of all 2×2 matrices over the field F. Prove that V has dimension 4 by exhibiting a basis for V which has
four elements.
12. Let ${ }^{\mathcal{B}}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the ordered basis for \mathbb{R}^{3} consisting of $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1), \alpha_{3}=(1,0,0)$. What are the coordinates of the vector (a, b, c) in the ordered basis ${ }^{\mathcal{B}}$?
13. Check whether the function $T: F^{3} \rightarrow F^{3}$ defined as
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, 2 x_{1}+x_{2},-x_{1}-2 x_{2}+2 x_{3}\right)$ is linear.
14. Let W be the subspace of R^{4} spanned by the vectors $\alpha_{1}=(1,0,-1,2)$ and $\alpha_{2}=(2,3,1,1)$.Which linear functional $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}$ are in the annihilator of W .
15. Let f and g be linear functionals on a vector space V . If the null space of g contains the null space of f, prove that g is a scalar multiple of f.
16. Define determinant function on $K^{n x n}$. Show that the function D from $K^{2 \times 2}$ to K defined by $D(A)=A_{11} A_{22}-A_{12} A_{21}$ is a determinant function.
17. Let T be a linear operator on \mathbb{R}^{3} which is represented in the standard ordered basis by the matrix
$A=\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$. Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^{3}, each vector of which is a
characteristic vector of T
18. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. Prove that the characteristic and minimal polynomials for A have the same roots, except for multiplicities.

Part C (Essay Type Questions)

Answer any two questions.
Weight 5 each.
19.

Consider the 5×5 matrix $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(a) Find an invertible matrix P such that $P A$ is a row-reduced echelon matrix R.
(b) Find a basis for the row space W of A.
(c) Which vectors $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ are in W?
(d) Find the coordinate matrix of each vector $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ in W in the ordered basis chosen in (b).
(e) Write each vector $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ in W as a linear combination of the rows of A.
(f) Give an explicit description of the vector space V of all 5×1 column matrices X such that $A X=0$.
(g) Find a basis for V.
20. Let V and W be finite dimensional vector spaces over the field F such that $\operatorname{dim} V=\operatorname{dim} W$. If $T: V \rightarrow W$ be a linear transformation, prove that the following statements are equivalent:
(i) T is invertible.
(ii) T is non-singular.
(iii) T is onto.
(iv) If $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}$ is a basis for V then $\left\{T \alpha_{1}, T \alpha_{2}, T \alpha_{3}, \ldots, T \alpha_{n}\right\}$ is a basis for W.
(v) There is some basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}$ for V such that $\left\{T \alpha_{1}, T \alpha_{2}, T \alpha_{3}, \ldots, T \alpha_{n}\right\}$ is a basis for W
21. If D is any alternating n-linear function on $K^{n \times n}$, then prove that for each $n \times n$ matrix $A, D(A)=(\operatorname{det} A) D(I)$.
22. Let $V=W_{1} \oplus \cdots \oplus W_{k}$, prove that there exist k linear operators $E_{1}, E_{2}, \cdots, E_{k}$ on V such that
i. Each E_{i} is a projection
ii. $E_{i} E_{j}=0$ if $i \neq j$
iii. $I=E_{1}+\cdots+E_{k}$
iv. The range of E_{i} is W_{i}

Also prove that if $E_{1}, E_{2}, \cdots, E_{k}$ are k linear operators on V which satisfy conditions (i), (ii) and (iii) and if we let W_{i} be the range of E_{i} then $V=W_{1} \oplus \cdots \oplus W_{k}$

