\qquad
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, DECEMBER 2018

First Semester

Faculty of Science
Branch I (a) : Mathematics
MT01C01—LINEAR ALGEBRA
(2012 Admission onwards)
Time : Three Hours
Maximum Weight: 30

Part A

Answer any five questions.
Each question carries weight 1.

1. Are the vectors $(1,8,2,3),(-2,-1,5,2),(3,-1,-4,1),(2,0,1,3)$ linearly independent in \mathbb{R}^{4}.
2. Find three vectors in \mathbb{R}^{3} which are linearly independent, and none of them lies on the axes.
3. Let V be the vector space of all $n \times n$ matrices over the field F , and let B be a fixed $n \times n$ matrix. Is $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{T}(\mathrm{A})=\mathrm{AB}-\mathrm{BA}$, a linear map ?
4. Consider the linear operator T defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}, x_{1}-x_{2}, 2 x_{1}+x_{2}+x_{3}\right)$. Prove that $\left(\mathrm{T}^{2}-\mathrm{I}\right)(\mathrm{T}-3 \mathrm{I})=0$.
5. Show that linear combination of n-linear functions is n-linear.
6. Check whether the function D on the set of 3×3 matrices over the field of real numbers defined by $D(A)=A_{11} A_{22} A_{33}$ is 3-linear.
7. Find a projection E which projects \mathbb{R}^{2} onto the subspace spanned by $(1,1)$ along the subspace spanned by $(1,-2)$.
8. Find a 3×3 matrix for which the minimal polynomial is x^{2}.

> Part B
> Answer any five questions.
> Each question carries weight 2.
9. Let $\mathscr{B}=\{(1,0,-1),(1,1,1),(1,0,0)\}$ be the ordered basis for \mathbb{R}^{3}. Find the co-ordinates of the vector (a, b, c) with respect to the basis \mathscr{B}.
10. Let W_{1} and W_{2} are subspaces of a finite-dimensional vector space V . Prove that $\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2}\right)^{0}=\mathrm{W}_{1}^{0}+\mathrm{W}_{2}^{0}$.
11. Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right.$. Find the matrix of T in the standard basis.
12. Suppose V and W are finite dimensional vector spaces over the field F , and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Show that the range of T^{t} is the annihilator of the null space of T .
13. Let K be a commutative ring with identity, and let A and B be $n \times n$ matrices over K. Prove that

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B) .
$$

14. If E is a projection on R along N , then prove that $(\mathrm{I}-\mathrm{E})$ is a projection on N along R .
15. Let a, b and c be elements of a Field F and $\mathrm{A}=\left[\begin{array}{lll}0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a\end{array}\right]$ be the matrix over F . Prove that the characteristic polynomial and minimal polynomial for A is $x^{3}-a x^{2}-b x-c$.
16. Let W be an invariant subspace for T . Prove that the characteristic polynomial of the restriction operator T_{W} divides the characteristic polynomial of T .

Part C

Answer any three questions.
Each question carries weight 5 .
17. Let V be the set of all 2×2 matrices A with complex entries which satisfy $\mathrm{A}_{11}+\mathrm{A}_{22}=0$. Show that V is a vector space over the field of real numbers, with the usual matrix addition and multiplication of a matrix by a scalar. Also find a basis for this vector space.
18. If f is a non-zero linear functional on the vector space V then, show that the null space of f is a hyperspace in V .
19. Let T be the linear operator on \mathbb{R}, the matrix of which in the standard ordered basis is $\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right]$. Find a basis for the range of T and a basis for the null space of T .
20. Let K be a commutative ring with identity and let n be a positive integer. Show that there is precisely one determinant function on the set of $n \times n$ matrices over K.
21. Explain the Direct-sum decomposition of a finite dimensional vector space.
22. Let V be a real vector space and E a projection. Prove that $(I+E)$ is invertible. Find its inverse.

$$
(3 \times 5=15)
$$

