Page 1/3

QP CODE: 20100570

Name

Reg No

:

:

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Core course - MM6CRT04 - LINEAR ALGEBRA

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

FEF9B611

Time: 3 Hours

Marks: 80

.....

.....

Part A

Answer any ten questions. Each question carries 2 marks.

- Prove that every mxn matrix A there is a unique mxn matrix B such that A+B = 01.
- Define an orthogonal matrix. Give an example of an orthogonal matrix. 2.
- 3. a) Define an invertible matrix b)Prove that if A is invertible then $(A^{-1})' = (A')^{-1}$
- Define a basis of a vector space V and Prove that $\{(1,1), (1,-1)\}$ is a basis of R2. 4.
- Define dimension of a vector space V and Find the dimension of Rn [X] 5.
- Define departure space and arrival space of a linear mapping. Give an example. 6.
- Define linear isomorphism of vector spaces. Give an example. 7.
- 8. Define an ordered basis of a vector space. Prove that every basis of n elements give rise to n! distinct ordered bases.
- 9. Define transition matrix from the basis $(v_i)_m$ to the basis $(v'_i)_m$ of a vector space V.
- 10. If λ is an eigen value of an invertible matrix A, then prove that $\lambda \neq 0$ and λ^{-1} is an eigen value of A⁻¹.
- 11. Define eigen value of a linear map and the eigen vector associated with it.
- 12. Define diagonalizable linear map and diagonalizable matrix.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

15. Prove that Mmxn (R) be the set of all mxn matrices is a vector space

16. Prove that the intersection of any set of subspaces of a vector space V is a subspace of V

- 17. Define injective linear mapping. Prove that if the linear mapping $f: V \to W$ is injective and $\{v_1, v_2, \ldots, v_n\}$ is a linearly independent subset of V then $\{f(v_1), f(v_2), \ldots, f(v_n)\}$ is a linearly independent subset of W.
- 18. a) Define rank and nullity of a linear mapping. Find the rank and nullity of pr₁ : ℝ³ → ℝ defined by pr₁(x, y, z) = x.
 b) Let V and W be vector spaces each of dimension n over a field F. If f : V → W is linear, then prove that f is surjective if and only if f is bijective.
- a) Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
 b) Suppose that f is nilpotent of index p. If x ∈ V is such that f^{p-1}(x) ≠ 0, prove that {x, f(x), f²(x), ..., f^{p-1}(x)} is linearly independent.

20.	Find the eigen values and their algebr					-			-
21.		$\begin{bmatrix} 2\\ 1 \end{bmatrix}$	1	0	0		0	0 -	
	For the nXn tridiagonal matrix An =	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\frac{2}{1}$	$\frac{1}{2}$	1	• • •	0	0	Prove that det $An = n + 1$
			•			• • • • •	•	•	
		0	0	0	0	•••	2	1	
		0	0	0	0		1	2 _	

 $(6 \times 5 = 30)$

Part C

Answer any **two** questions.

Each question carries 15 marks.

22. a)Prove that if A is an mxn matrix then the homogeneous system of equation Ax = 0 has a nontrivial solution if and only if rank A < n.

b)Show that the matrix $A = \begin{bmatrix} 1 & 2 & -1 & -2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ is of rank 3 and final matrices P,Q such that PAQ = [I3, 0].

c)Show that the system of equations x+y+z+t=4, $x+\beta y+z+t=4$, $x+y+\beta z+(3-\beta)t=6$, $2x + 2y + 2z + \beta t = 6$.has a unique solution if $\beta \neq 1, 2$.

23. a) Prove that $P(x) = 2 + x + x^2$, $q(x) = x + 2x^2$, $r(x) = 2 + 2x + 3x^2$ is linearly dependent b)Let S_1 and S_2 be non empty subsets of a vector space such that $S_1 \subseteq S_2$. Prove that 1) If S_2 is linearly independent then S_1 is also linearly independent 2) If S_1 is linearly dependent then S_2 is also linearly dependent.

c)Determine which of following subsets of M_{3x1} R are linearly dependent

i) $\langle 0 , 2 , 1 \rangle$ ii) $\langle 1 , 1$		L
	, 2	2
i) $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$ ii) $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$		J

24. a) Define Im f and Ker f where f is a linear mapping from a vector space to a vector space.
b) Write image and kernel for f_A : Mat_{n×1} ℝ → Mat_{n×1} ℝ described by f_A(**x**) = A**x** where A is a given real n × n matrix.

c) Find Im f and Ker f when $f : \mathbb{R}^3 \to \mathbb{R}^3$ is given by f(a, b, c) = (a + b, b + c, a + c).

25. a) Define similar matrices and state whether similar matrices have the same rank. Show that if matrices A, B are similar then so are A', B'.

b) Check whether for every $\vartheta \in \mathbb{R}$, the complex matrices $\begin{bmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{bmatrix}$, $\begin{bmatrix} e^{i\vartheta} & 0 \\ 0 & e^{-i\vartheta} \end{bmatrix}$ are similar.

c) Prove that the relation of being similar is an equivalence relation on the set of $n \times n$ matrices.

 $(2 \times 15 = 30)$