QP CODE: 20100570

Reg No	:
Name	:

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020 Sixth Semester
 Core course - MM6CRT04 - LINEAR ALGEBRA

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science

2017 Admission Onwards
FEF9B611
Time: 3 Hours
Marks: 80

Abstract

Part A Answer any ten questions. Each question carries 2 marks.

1. Prove that every mxn matrix A there is a unique mxn matrix B such that $A+B=0$
2. Define an orthogonal matrix. Give an example of an orthogonal matrix.
3. a) Define an invertible matrix
b)Prove that if A is invertible then $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$
4. Define a basis of a vector space V and Prove that $\{(1,1),(1,-1)\}$ is a basis of R 2 .
5. Define dimension of a vector space V and Find the dimension of $\mathrm{Rn}[\mathrm{X}]$
6. Define departure space and arrival space of a linear mapping. Give an example.
7. Define linear isomorphism of vector spaces. Give an example.
8. Define an ordered basis of a vector space. Prove that every basis of n elements give rise to n ! distinct ordered bases.
9. Define transition matrix from the basis $\left(v_{i}\right)_{m}$ to the basis $\left(v_{i}^{\prime}\right)_{m}$ of a vector space V.
10. If λ is an eigen value of an invertible matrix A, then prove that $\lambda \neq 0$ and λ^{-1} is an eigen value of A^{-1}.
11. Define eigen value of a linear map and the eigen vector associated with it.
12. Define diagonalizable linear map and diagonalizable matrix.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Reduce the following matrix to row echelon form $\left[\begin{array}{lllll}1 & 2 & 0 & 3 & 1 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 0 & 1 & 1 & 3 \\ 1 & 1 & 1 & 2 & 1\end{array}\right]$
14. Find the row rank of the matrix $\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 1 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right]$
15. Prove that Mmxn (R) be the set of all mxn matrices is a vector space
16. Prove that the intersection of any set of subspaces of a vector space V is a subspace of V
17. Define injective linear mapping. Prove that if the linear mapping $f: V \rightarrow W$ is injective and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a linearly independent subset of V then $\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right\}$ is a linearly independent subset of W.
18. a) Define rank and nullity of a linear mapping. Find the rank and nullity of $p r_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $p r_{1}(x, y, z)=x$.
b) Let V and W be vector spaces each of dimension n over a field F. If $f: V \rightarrow W$ is linear, then prove that f is surjective if and only if f is bijective.
19. a) Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
b) Suppose that f is nilpotent of index p. If $x \in V$ is such that $f^{p-1}(x) \neq 0$, prove that $\left\{x, f(x), f^{2}(x), \ldots, f^{p-1}(x)\right\}$ is linearly independent.
20.

Find the eigen values and their algebraic multiplicity of $\left[\begin{array}{ccc}-3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2\end{array}\right]$
21.

For the nXn tridiagonal matrix $A n=\left[\begin{array}{ccccccc}2 & 1 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 2 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 2 & 1 & \ldots & 0 & 0 \\ . & . & . & . & \ldots & . & . \\ 0 & 0 & 0 & 0 & \ldots & 2 & 1 \\ 0 & 0 & 0 & 0 & \ldots & 1 & 2\end{array}\right]$ Prove that det An $=\mathrm{n}+1$.

Part C

Answer any two questions.
Each question carries 15 marks.
22. a)Prove that if A is an mxn matrix then the homogeneous system of equation $A x=0$ has a nontrivial solution if and only if $\operatorname{rank} \mathrm{A}<\mathrm{n}$.
b)Show that the matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & -2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1\end{array}\right]$ is of rank 3 and final matrices P, Q such that $\mathrm{PAQ}=[\mathrm{I} 3,0]$.
c) Show that the system of equations $x+y+z+t=4, x+\beta y+z+t=4, x+y+\beta z+(3-\beta) t=6,2 x$ $+2 \mathrm{y}+2 \mathrm{z}+\beta \mathrm{t}=6$.has a unique solution if $\beta \neq 1,2$.
23. a) Prove that $P(x)=2+x+x^{2}, q(x)=x+2 x^{2}, r(x)=2+2 x+3 x^{2}$ is linearly dependent b)Let S_{1} and S_{2} be non empty subsets of a vector space such that $S_{1} \subseteq S_{2}$. Prove that

1) If S_{2} is linearly independent then S_{1} is also linearly independent
2) If S_{1} is linearly dependent then S_{2} is also linearly dependent.
c) Determine which of following subsets of $M_{3 \times 1} R$ are linearly dependent

$$
\text { i) }\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\} \quad \text { ii) }\left\{\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\right\}
$$

24. a) Define $\operatorname{Im} f$ and $\operatorname{Ker} f$ where f is a linear mapping from a vector space to a vector space.
b) Write image and kernel for $f_{A}: M a t_{n \times 1} \mathbb{R} \rightarrow M a t_{n \times 1} \mathbb{R}$ described by $f_{A}(\mathbf{x})=A \mathbf{x}$ where
A is a given real $n \times n$ matrix.
c) Find $\operatorname{Im} f$ and $\operatorname{Ker} f$ when $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by $f(a, b, c)=(a+b, b+c, a+c)$.
25. a) Define similar matrices and state whether similar matrices have the same rank. Show that if matrices A, B are similar then so are A^{\prime}, B^{\prime}.
b) Check whether for every $\vartheta \in \mathbb{R}$, the complex matrices $\left[\begin{array}{cc}\cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta\end{array}\right]$, $\left[\begin{array}{ll}e^{i \vartheta} & 0 \\ 0 & e^{-i \vartheta}\end{array}\right]$ are similar.
c) Prove that the relation of being similar is an equivalence relation on the set of $n \times n$ matrices.
