# M.Sc. DEGREE (C.S.S ) EXAMINATION, NOVEMBER 2019 First Semester <br> Faculty of Science <br> MATHEMATICS <br> Core - ME010105-GRAPH THEORY <br> 2019 Admission Onwards <br> EC02C51B 

Time: 3 Hours
Maximum Weight :30

## Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Define (a) complete bipartite graph (b) selfcomplementary graph (c) clique of a graph (d) isomorphism between graphs
2. Define orientation of a graph and how many orientations does a simple graph of $m$ edges have?
3. 

a. Define connectivity and edge connectivity of a graph.
b. Prove or disprove: if H is a subgraph of G (i) $\kappa(H) \leq \kappa(G)$
(ii) $\lambda(H) \leq \lambda(G)$
4. a.Define and give example for cyclic edge connectivity of a graph b. State Ear decomposition theorem of a block.
5.

Prove that a simple graph $G$ is a tree if and only if any two distinct vertices are connected by a unique path.
6. Define Eulerian graph with an example.
7. If $G$ contains exactly one odd cycle, then show that $\chi(G)=3$.
8. Prove that every $k$ chromatic graph contains a k critical subgraph.
9. Draw dual of $W_{5}$ and write your comment.
10. What is the spectrum of $K_{n}$

# Part B (Short Essay/Problems) <br> Answer any six questions. <br> Weight $\mathbf{2}$ each. 

11. Define graphical sequence and write the necessary condition for $d=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ to be graphical. Show that $d=$ ( $\{7,6,3,3,2,1,1,1\})$ is not graphical.
12. For a simple graph $G$ prove that $m(L(G))=\frac{1}{2} \sum_{i=1}^{n} d_{i}^{2}-m$
13. If e is a loop of a connected graph G , then prove $\tau(G)=\tau(G-e)+\tau($ Goe $)$
14. Find a minimal spanning tree of $G$ whose weight matrix is given by
$\left[\begin{array}{cccccc}\infty & 385 & 425 & 1035 & 708 & 644 \\ 385 & \infty & 255 & 740 & 773 & 329 \\ 425 & 255 & \infty & 679 & 531 & \infty \\ 1035 & 740 & 679 & \infty & 816 & 860 \\ 708 & 773 & 531 & 816 & \infty & 1095 \\ 644 & 329 & \infty & 860 & 1095 & \infty\end{array}\right]$ using Kruskal's algorithm
15. Let G be a simple graph with $n \geq 3$ vertices. If for every pair of nonadjacent vertices $\mathrm{u}, \mathrm{v}$ of G , $d(u)+d(v) \geq n$, then show that G is Hamiltonian.
16. For any graph G with n vertices and independence number $\alpha$, prove that $n / \alpha \leq \chi \leq n-\alpha+1$.
17. Find a simple graph $G$ with degree sequence $(4,4,3,3,3,3)$ such that (i) $G$ is planar (ii) $G$ is nonplanar.
18. Prove that for any simple planar graph $G, \delta(G) \leq 5$
( $6 \times 2=12$ weightage)

## Part C (Essay Type Questions)

## Answer any two questions.

Weight 5 each.
19. a) Define strong product of two graphs $G_{1}$ and $G_{2}$.
b) Find the order and size of $G_{1} \boxtimes G_{2}$
c) Construct $K_{2} \boxtimes P_{3}$
20.
a. If $\{x, y\}$ is a 2-edge cut of a graph $G$, show that every cycle of $G$ that contains x must also contain y .
b. Simple connected cubic graph G has a cut vertex if and only if it has a cut edge.
c. Show that a graph has a cut vertex need not imply it has a cut edge
21. (a) If G is a simple graph with $n \geq 3$ vertices such that $d(u)+d(v) \geq n+1$ for every pair of non adjacent vertices $u$ and $v$ of G , then G is hamiltonian connected. Prove
(b) Show by an example that if closure of a graph $G$ is complete then $G$ is Hamiltonian.
(c) Show by an example that if closure of a graph G is Hamiltonian then G is Hamiltonian.
22. What you mean by four color conjecture. Prove that every planar graph is 6 - vertex colorable.
( $2 \times 5=10$ weightage)

