QP CODE: 19002356

Reg No:Name:

M.Sc. DEGREE (C.S.S) EXAMINATION, NOVEMBER 2019

First Semester

Faculty of Science

MATHEMATICS

Core - ME010105 - GRAPH THEORY

2019 Admission Onwards

EC02C51B

Time: 3 Hours

Maximum Weight :30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Define (a) complete bipartite graph (b) selfcomplementary graph (c) clique of a graph (d) isomorphism between graphs
- 2. Define orientation of a graph and how many orientations does a simple graph of m edges have?
- 3.
- a. Define connectivity and edge connectivity of a graph.
- b. Prove or disprove: if H is a subgraph of G (i) $\kappa(H) \leq \kappa(G)$

(ii) $\lambda(H) \leq \lambda(G)$

- 4. a.Define and give example for cyclic edge connectivity of a graph b.State Ear decomposition theorem of a block.
- 5. Prove that a simple graph G is a tree if and only if any two distinct vertices are connected by a unique path.
- 6. Define Eulerian graph with an example.
- 7. If G contains exactly one odd cycle, then show that $\chi(G) = 3$.
- 8. Prove that every k chromatic graph contains a k critical subgraph.
- 9. Draw dual of W_5 and write your comment.
- 10. What is the spectrum of K_n

(8×1=8 weightage)

Turn Over

ſ

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Define graphical sequence and write the necessary condition for $d = \{d_1, d_2, \dots, d_n\}$ to be graphical. Show that $d = \{7, 6, 3, 3, 2, 1, 1, 1\}$) is not graphical.
- 12. For a simple graph G prove that $m(L(G)) = rac{1}{2}\sum\limits_{i=1}^n d_i^2 m$
- 13. If e is a loop of a connected graph G, then prove au(G) = au(G-e) + au(Goe)
- 14. Find a minimal spanning tree of G whose weight matrix is given by

	644	708	1035	425	385	$\overline{\infty}$
using Kruskal's algorithm	329	773	740	255	∞	385
	∞	531	679	∞	255	425
	860	816	∞	679	740	1035
	1095	∞	816	531	773	708
	∞	1095	860	∞	329	644

- 15. Let G be a simple graph with $n \ge 3$ vertices. If for every pair of nonadjacent vertices u,v of G, $d(u) + d(v) \ge n$, then show that G is Hamiltonian.
- 16. For any graph G with n vertices and independence number α , prove that $n/\alpha \le \chi \le n \alpha + 1$.
- 17. Find a simple graph G with degree sequence (4, 4, 3, 3, 3, 3) such that (i) G is planar (ii) G is nonplanar.
- 18. Prove that for any simple planar graph G, $\ \delta(G) \leq 5$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. a) Define strong product of two graphs G_1 and G_2 .
 - b) Find the order and size of $G_1 oxtimes G_2$
 - c) Construct $K_2 \boxtimes P_3$
- 20.
- a. If $\{x,y\}$ is a 2-edge cut of a graph G, show that every cycle of G that contains x must also contain y.
 - b. Simple connected cubic graph G has a cut vertex if and only if it has a cut edge.

C. Show that a graph has a cut vertex need not imply it has a cut edge

21. (a) If G is a simple graph with $n \ge 3$ vertices such that $d(u) + d(v) \ge n + 1$ for every pair of non adjacent vertices u and v of G, then G is hamiltonian connected. Prove

- (b) Show by an example that if closure of a graph G is complete then G is Hamiltonian.
- (c) Show by an example that if closure of a graph G is Hamiltonian then G is Hamiltonian.
- 22. What you mean by four color conjecture. Prove that every planar graph is 6 vertex colorable.

(2×5=10 weightage)