

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester
Core course - MM6CRT02 - GRAPH THEORY AND METRIC SPACES

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science 2017 Admission Onwards
 4A7743A4

Time: 3 Hours

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Define edge set of a graph. When will you say that two edges are parallel in a graph?
2. Give two different drawings of $\mathrm{K}_{3,3}$ which are isomorphic.
3. Define a complete bipartite graph. Give an example.
4. Define an edge deleted subgraph.
5. Define a tree. Draw all non - isomorphic trees with 5 vertices.
6. Define Cut vertex and Draw one example.
7. Define an Euler tour of a graph G and an Euler graph.
8. Define Hamiltonian graph. Is K_{4} Hamiltonian, justify.
9. Define usual metric on \mathbf{R}.
10. Define closed set in a metric space (X, d).
11. Give an example of a sequence which is convergent, but the underlying set do not have a limit point.
12. Let X and Y be metric spaces and f a mapping of X into Y . If $x_{n} \rightarrow x_{0}$ implies $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ then prove that f is continuous at x_{0}.
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Define eccentricity, diameter and radius of a connected graph G with vertex set V . Which simple graphs have diameter 1 ?
14.

Define adjacency matrix of a graph. Find the graph whose adjacency matrix is $\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
What can you say about the graph if all the entries of the main diagonal are zero?
15. Prove that an edge ' e ' of a graph G is a bridge if and only if ' e ' is not a part of any cycle in G.
16. Prove that a graph G is connected if and only if it has a spanning tree.
17. Let G be a simple graph with n vertices and let u and v be non-adjacent vertices in G such that $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v}) \geq \mathrm{n}$. Then prove that G is Hamiltonian if and only if $\mathrm{G}+\mathrm{uv}$ is Hamiltonian.
18. Prove that every open sphere is an open set.
19. Write a short note on boundary of a set.
20. Define Cauchy sequence in a metric space. Prove that every convergent sequence is Cauchy. Give an example of a sequence which is Cauchy, but not convergent.
21. Let X be a complete metric space and let Y be a subspace of X . Prove that Y is complete if and only if it is closed.

> Part C
> Answer any two questions.
> Each question carries 15 marks.
22. (a) State and prove First theorem of graph theory.
(b) Prove that in any graph G there is an even number of odd vertices.
(c) What is the smallest number of n such that the complete graph K_{n} has atleast 500 edges?
23. a) State and prove Whitney's theorem for 2- connected graphs.
b) Let u and v be two vertices of the 2 - connected graph. Then prove that there is a cycle passing through both u and v.
24. a) Let A and B be two subsets of a metric space X, then prove or disprove
(i) $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B) \quad$ (ii) $\operatorname{int}(A \cup B)=\operatorname{int} A \cup \operatorname{int} B$
b) Prove that int a is the union of all open sets in A.
c) Prove that A is open if and only if $\mathrm{A}=\operatorname{int} \mathrm{A}$.
25. (a) If $\left\{A_{n}\right\}$ is a sequence of nowhere dense sets in a complete metric space X , then prove that there exists a point in X which is not in any of the $A_{n}^{\prime} s$.
(b) State Baire's theorem. Explain how it is related to the above result.

