Reg No	$:$
Name	

B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021
 Sixth Semester
 CORE - MM6CRT02 - GRAPH THEORY AND METRIC SPACES
 Common for B.Sc Mathematics Model I \& B.Sc Mathematics Model II Computer Science
 2017 Admission Onwards
 9FAF2725

Time: 3 Hours
Max. Marks : 80

Part A
Answer any ten questions.
Each question carries 2 marks.

1. Define a Graph. Define a loop in a graph.
2. When will you say that two graphs are isomorphic?
3. Draw all non-isomorphic complete bipartite graphs with atmost 4 vertices.
4. Define a walk. When will you say that a walk is open?
5. Define a tree. Draw a tree which is a complete graph.
6. Define spanning trees. How many spanning trees are there for K4?
7. Define Eulerian graph. Is K3 Eulerian? Justify.
8. Define closure of a graph. Draw one example.
9. Define metric space.
10. Let (X, d) be a metric space and $A \subseteq X$. Define an interior point of A.
11. Define convergence in a metric space using metric.
12. Define isometry.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Let G be a simple graph with n vertices and let \bar{G} be its complement. Prove that for each vertex vin G, $d_{G}(v)+d_{G}(v)=n-1$.
14. Define incidence matrix of a graph. What can you say about the sum of the elements in the $\mathrm{i}^{\text {th }}$ row of of the incidence matrix of the graph. Write down the incidence marix of K_{4}
15. If G be a graph with n vertices and q edges. Let $\omega(\mathrm{G})$ denote the number of connected components of G . Then prove that G has at least $\mathrm{n}-\omega(\mathrm{G})$ edges.
16. a) Define cut vertex of a graph.
b) Let v be a vertex of the connected graph G. Then prove that ' v ' is cut vertex of G if and only if there are two vertices ' u ' and ' w ' of G, both different from ' v ', such that ' v ' is on every $u-w$ path in G.
17. Prove that a simple graph G is Hamiltonian if and only if its closure $C(G)$ is Hamiltonian.
18. Prove that in any metric space X, the empty set \varnothing and the full space X are open sets.
19. Define Cantor set. Prove that there exist infinitely many points in Cantor set.
20. Let X be a metric space. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, show that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
21. If $\left\{A_{n}\right\}$ is a sequence of nowhere dense sets in a complete metric space X, then prove that there exists a point in X which is not in any of the $A_{n}^{\prime} s$.
$(6 \times 5=30)$

Part C

Answer any two questions.
Each question carries 15 marks.
22.
(a)State and prove First theorem of graph theory.
(b)Prove that in any graph G there is an even number of odd vertices.
(c)Let G be a k-regular graph, where k is an odd number. Prove that the number of edges in G is a multiple of k.
23. a)Let G be simple graph with at least three vertices. Then prove that G is 2 - connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint $u-v$ paths in G.
b) Let u and v be two vertices of the 2 - connected graph. Then prove that there is a cycle passing through both u and v .
24. a) In any metric space X prove that the empty set \varnothing and the full set X are closed sets.
b) Prove that a subset F of a metric space X is closed if and only if its complement F^{\prime} is open.
25. a) Prove that if a convergent sequence in a metric space has infinitely many distinct points, then its limit is a limit point of the set of points of the sequence.
b) Will the result be true, if the condition infinitely many distinct points is not given? Justify.
$(2 \times 15=30)$

