\qquad
\qquad

M.Sc. DEGREE (C.S.S.) EXAMINATION, DECEMBER 2018

First Semester

Faculty of Science

Branch I (a)-Mathematics MT 01 C04—GRAPH THEORY
(2012 Admission onwards)
Time : Three Hours
Maximum Weight : 30

Part A

Answer any five questions. Each question carries weight 1.

1. Give an example of a non-simple disconnected graph with $\delta \geq \frac{n-1}{2}$.
2. Describe Edge connectivity with examples.
3. Give an example of a tree with just one central vertex that is also a centroidal vertex.
4. Describe a minimal dominating set of the Petersen graph.
5. Define Chromatic number of a graph G and show that $\chi(\mathrm{G})=2$ if and only if G is a bipartite graph with at least one edge.
6. Does there exist an Eulerian graph with an even number of vertices and an odd number of edges? Justify.
7. Is the Petersen graph planar ? Justify.
8. Draw the dual of the Herschel graph.

Part B

Answer any five questions.
Each question carries weight 2.
9. Let G be a simple connected graph with n vertices such that Aut $(\mathrm{G}) \simeq \mathrm{S}_{n}$, show that G is the complete graph K_{n}.
10. In a group of six people, prove that there must be three people who are mutually acquainted or three people who are mutually non-acquainted.
11. Suppose G is a connected graph of order $n \geq 2$, prove that $\gamma(\mathrm{G}) \leq \frac{n}{2}$.
12. Prove that a simple graph is a tree if and only if any two distinct vertices are connected by a unique path.
13. Prove that any critical graph is connected.
14. For a non-trivial connected graph G, show that G is Eulerian if and only if G is an edge-disjoint union of cycles.
15. Prove that a graph is planar if and only if it is embeddable on a sphere.
16. Show that all wheels $\mathrm{W}_{n}, n \geq 3$ are self-dual.

Part C
 Answer any three questions.
 Each question carries weight 5 .

17. Prove that the set $\operatorname{Aut}(\mathrm{G})$ of all automorphisms of a simple graph G is a group with respect to the composition of mappings as the group operation.
18. Prove that every connected graph contains a spanning tree.
19. Show that a tree with at least two vertices contains at least two pendant vertices.
20. Prove that a graph G is Eulerian if and only if each edge e of G belongs to an odd number of cycles of G.
21. Prove that a graph G is planar if and only if each of its blocks is planar.
22. Prove that K_{5} is non-planar.
