21000059

Reg. No.....

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2021

Third Semester

Faculty of Science Branch I (A)–Mathematics MT 03 C12—FUNCTIONAL ANALYSIS

(2012 – 2018 Admissions)

Time : Three Hours

Maximum Weight : 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Prove or disprove : Union of two subspace of a vector space is again a subspace.
- 2. Show that in a Banach space an absolutely convergent series is convergent.
- 3. Differentiate between linear functional and linear operator with examples.
- 4. With usual notation prove :

 $||x+y||^2 \le ||x||^2 + ||y||^2.$

- 5. Show that every orthonormal set is linearly independent.
- 6. Define Banach space and Hilbert space. Give an example of a Banach space which is not Hilbert.
- 7. State category theorem. Explain its importance.
- 8. When a normed space become complete ? Prove your statement.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Show that every finite dimensional subspace of a normed space is complete.
- 10. Show that if a normed space has a Schauser basis, it is separable.
- 11. State and prove the theorem on the bounded linear extension of bounded linear operator.
- 12. Establish the theorem on the dimension of the algebraic dual of a *n*-dimensional vector space.

21000059

- 13. Obtain Schwarz inequality. When it becomes an equality ?
- 14. Define : (i) lattice ; (ii) partially ordered set ; (iii) totally ordered set ; (iv) convex set.
- 15. Show that every Hilbert space is reflexive.
- 16. State and prove uniform boundedness theorem.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Let $T: X \to Y, S: Y \to Z$ be bijective linear operators. Show that :
 - (a) $(ST)^{-1} = T^{-1}S^{-1}$.
 - (b) The range \mathcal{R} (T) is a vector space.
 - (c) If dim \mathcal{D} (T) = $n < \infty$, then dim \mathcal{R} (T) = dim \mathcal{D} (T).
- 18. Let X and Y be two normed space. Define B (X, Y) and show that it is a Banach space if, Y is Banach. Deduce that the dual X¹ of the normed space X is a Banach space.
- 19. (a) Obtain the dual space of l^p where 1 .
 - (b) Show that inner product spaces are normed spaces but not conversely.
- 20. (a) Establish the existence of Hilbert-space adjoint operator.
 - (b) With usual notations prove $(S + T)^* = S^* + T^*$ and $(S T)^* = T^* S^*$.
- 21. (a) Obtain Bessel inequality.
 - (b) Define unitary operators. State and prove four of its properties.
- 22. Establish Hahn Banach theorem (Generalized).

 $(3 \times 5 = 15)$

