B.Sc.DEGREE (CBCS) EXAMINATION, DECEMBER 2018

First Semester

Core Course - MM1CRT01 - FOUNDATION OF MATHEMATICS

(Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science) 2017 Admission (Reappearance) C793EB13

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Define inverse of a conditional statement $p \rightarrow q$.
2. State and prove double negation laws of logical equivalence.
3. Define Existential instantiation.
4. Use Venn diagram to show the relationship A is a subset of B
5. Write De- Morgan's laws in set theory
6. Find the domain, codomain and range of $f(x)=x^{2}$ where $f: Z \rightarrow Z$
7. Explain the terms reflexive relation and irreflexive relation withexamples.
8. List the ordered pairs in the relaiton on $\{1,2,3,4\}$ corresponding to the matrix $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
9. Explain the term Partition of a set with example.
10. Form a rational cubic equation whose roots are $2,3+i$.
11. If α, β, γ be the roots of the equation $a x^{3}+b x^{2}+c x+d=0$ then find $\alpha \beta+\beta \gamma+\alpha \gamma$ and $\alpha+\beta+\gamma$.
12. Find any two rational roots of the equation $x^{4}-x^{3}-19 x^{2}+49 x-30=0$?

Part B

Answer any six questions.
Each question carries 5 marks.
13. Define Existential quantifier and universal quantifier by giving an example.
14. Show that $\exists x[P(x) \wedge Q(x)]$ and $\exists x P(x) \wedge \exists x Q(x)$ are not logically equivalent.
15. Define Modus tollens and Modus ponens. Write the truth table of the above rules of inference for propositional logic.
16. Let $f(x)=a x+b$ and $g(x)=c x+d$ where a, b, c, d are constants. Determine for which constants a, b, c, d it is true that $f \circ g=g \circ f$
17. Prove or disprove $\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$ for all real numbers x and y
18. Suppose that R is the relation on the set of strings of English letters such that ${ }_{a} R_{b}$ if and only if $l(a)=l(b)$ where $l(x)$ is the length of string x.Is R an equivalence relation?
19. Determine whether the posets with these Hasse Diagrams are lattices.

(ii)

20. Solve by Cardan's method $x^{3}-12 x-65=0$.
21. Solve the equation $x^{10}-3 x^{8}+5 x^{6}-5 x^{4}+3 x^{2}-1=0$?

Part C

Answer any two questions.
Each question carries 15 marks.
22. (a) Prove that $\sqrt{2}$ is irrational by the method of contradiction.
(b) Show that the following statements about the integer n are equivalent.
(i) n is even
(ii) $n-1$ is odd.
(iii) n^{2} is even.
23. a) Let $f: A \rightarrow B$ and S, T be subsets of A. Show that $f(S \cup T)=f(S) \cup f(T)$ and $f(S \cap T) \subseteq f(S) \cap f(T)$
b) Consider the equivalence relation $R=\{(x, y) / x-y$ is an integer $\}$. What are the equivalence classes of 1 and $\frac{1}{2}$ for this relation
24.

Draw the diagraph of the relation represented by the following matrices : (i) $\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
And hence determine whether these relations are reflexive, irreflexive,symmetric,asymmetric, antisymmetric, and/or transitive.
25. a) If α, β, γ are the roots of $x^{3}+p x+q=0$ form the equation whose roots are $\alpha^{2}+\beta \gamma, \beta^{2}+\gamma \alpha, \gamma^{2}+\alpha \beta$.
b) Find the equation whose roots are the roots of $2 x^{5}-9 x^{3}+4 x+3=0$ each increased by 2 .

