QP CODE: 19103096

B.Sc.DEGREE (CBCS) EXAMINATION, NOVEMBER 2019

First Semester

Core Course - MM1CRT01 - FOUNDATION OF MATHEMATICS

(Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 Admission Onwards

97F743A0

Time: 3 Hours

Answer any ten questions.

Part A

Each question carries 2 marks.

- State distributive laws of equivalence. 1.
- 2. Translate the following sentence into logical expression. 'Hiking is not safe on the trail whenever grizzly bears are seen in the area and berries are ripe along the trail'.
- 3. Define Universal generalization.
- Define the sets $A \cup B$ and $A \cap B$. 4.
- Let $A_i = \{i, i+1, i+2, ..., \}$. Find $\bigcap_{i=1}^n A_i$ 5.
- 6. Define strictly increasing and strictly decreasing functions.
- 7. Let R be the relation $R = \{(a, b) \mid a < b\}$ on the set of integers. Find R⁻¹.
- 8. What are te equivalence classes of 0 and 2 for congruence modulo 4.
- Prove or disprove : The set of positive integers and the set of negative integers together form a 9. partition of set of integers.
- 10. State Fundamental Theorem of algebra.

- 11. Form an equation whose roots are three times those of the equation $x^3 x^2 + x + 1 = 0$.
- 12. Show that the equation $12x^7 x^4 + 10x^3 28 = 0$ has at least 4 imaginary roots?

 $(10 \times 2 = 20)$

Turn Over

Part B

Answer any six questions. Each question carries 5 marks. •

医多口的现在

Name

Reg No :

Maximum Marks :80

- 13. Show that $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ is a tautology.
- 14. Use rules of inference to show that the hypotheses 'Ravi works hard', 'If Ravi works hard, then he is a dull boy' and 'If Ravi is a dull boy, he will not get the job' imply the conclusion 'Ravi will not get the job'.
- 15. Show that if 'n' is an integer and $n^3 + 5$ is odd, then 'n' is even by using the method of contraposition.
- 16. Let $A = \{a, b, c\}$, $B = \{x, y\}$, $C = \{0, 1\}$. Find $C \times B \times A$
- 17. Define and plot the ceiling function
- 18. Draw the diagraph representing the following relations:

(a)	1	1	1	0	(b)	0	1	0	1
	0	1	0	0		1	0	1	0
	0	0	1	1		0	1	0	1
	$\lfloor 1$	0	0	1		$\lfloor 1$	0	1	0

19. Determine whether the posets with these Hasse Diagrams are lattices.

- 20. Solve the equation $x^3 + 4x^2 12x 27 = 0$, given that its roots are in GP.
- 21. Show that the equation $x^4 3x^3 + 4x^2 2x + 1 = 0$ can be transformed into a reciprocal equation by diminishing the roots by unity, then solve the equation?

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

22. (a) Let P(x) denotes the statement x < 4. What are the truth values of the following propositions? (i)P(0) (ii)P(4) (iii)P(3)

(b) Let P(x) denotes the statement $x = x^4$. What are the truth values of the following propositions if the domain consists of integers.

 $(i) \exists x P(x) \quad (ii) \forall x P(x) \quad (iii) \forall x \neg P(x)$

(c) Find a counter example, if possible, to the following universally quantified statements, where the domain consists of all integers.

 $(i) orall x (x^2 \geq x) \quad (ii) orall x (x > 0 \lor x < 0) \quad (iii) orall x (x = 1)$

(d) Define by an example.

- (i) Universal quantifier.
- (ii) Existential quantifier.

- a) Prove [2x] = [x] + [x + 1/2] where x is a real number
 b) Consider the relations defined on the set of all positive integers by R₁ = {(a, b)/a divides
 b} and R₂ = {(a, b)/a is a multiple of b}. Then find R₁ ∪ R₂, R₁ ∩ R₂, R₁ − R₂ and R₂ − R₁
- 24. Let R be the relation represented by the matrix $M_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Find the matrices representing

(a) \mathbb{R}^{-1} (b) \bar{R} (c) \mathbb{R}^2 (d) \mathbb{R}^3 (e) \mathbb{R}^4

25. a) Solve $x^4 + 3x^3 + x^2 - 2 = 0$?

b) Determine the nature of the roots of the equation $x^4 + 3x^2 + 2x - 7 = 0$?

(2×15=30)