B.Sc.DEGREE (CBCS) EXAMINATION, NOVEMBER 2019
 First Semester

Core Course - MM1CRT01 - FOUNDATION OF MATHEMATICS

(Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 Admission Onwards
97F743A0
Time: 3 Hours

Part A
 Answer any ten questions.
 Each question carries 2 marks.

1. State distributive laws of equivalence.
2. Translate the following sentence into logical expression.
'Hiking is not safe on the trail whenever grizzly bears are seen in the area and berries are ripe along the trail'.
3. Define Universal generalization.
4. Define the sets $A \cup B$ and $A \cap B$.
5. Let $A_{i}=\{i, i+1, i+2, \ldots$,$\} . Find \cap_{i=1}^{n} A_{i}$
6. Define strictly increasing and strictly decreasing functions.
7. Let R be the relation $R=\{(a, b) / a<b\}$ on the set of integers. Find R^{-1}.
8. What are te equivalence classes of 0 and 2 for congruence modulo 4 .
9. Prove or disprove : The set of positive integers and the set of negative integers together form a partition of set of integers.
10. State Fundamental Theorem of algebra.
11. Form an equation whose roots are three times those of the equation $x^{3}-x^{2}+x+1=0$.
12. Show that the equation $12 x^{7}-x^{4}+10 x^{3}-28=0$ has atleast 4 imaginary roots?

Part B

13. Show that $(p \rightarrow q) \leftrightarrow(\neg p \vee q)$ is a tautology.
14. Use rules of inference to show that the hypotheses 'Ravi works hard', 'If Ravi works hard, then he is a dull boy' and 'If Ravi is a dull boy, he will not get the job' imply the conclusion 'Ravi will not get the job'.
15. Show that if ' n ' is an integer and $n^{3}+5$ is odd, then ' n ' is even by using the method of contraposition.
16. Let $A=\{a, b, c\}, B=\{x, y\}, C=\{0,1\}$. Find $C \times B \times A$
17. Define and plot the ceiling function
18. Draw the diagraph representing the following relations:
(a) $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
(b)
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
19. Determine whether the posets with these Hasse Diagrams are lattices.

(1)

20. Solve the equation $x^{3}+4 x^{2}-12 x-27=0$, given that its roots are in GP.
21. Show that the equation $x^{4}-3 x^{3}+4 x^{2}-2 x+1=0$ can be transformed into a reciprocal equation by diminishing the roots by unity,then solve the equation?
$(6 \times 5=30)$

Part C

Answer any two questions.
Each question carries 15 marks.
22. (a) Let $P(x)$ denotes the statement $x<4$. What are the truth values of the following propositions?
(i) $P(0) \quad(i i) P(4) \quad(i i i) P(3)$
(b) Let $P(x)$ denotes the statement $x=x^{4}$.. What are the truth values of the following propositions if the domain consists of integers.
(i) $\exists x P(x) \quad(i i) \forall x P(x) \quad(i i i) \forall x \neg P(x)$
(c) Find a counter example, if possible, to the following universally quantified statements, where the domain consists of all integers.
(i) $\forall x\left(x^{2} \geq x\right)$
(ii) $\forall x(x>0 \vee x<0)$
$(i i i) \forall x(x=1)$
(d) Define by an example.
(i) Universal quantifier.
(ii) Existential quantifier.
23. a) Prove $\lfloor 2 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{2}\right\rfloor$ where x is a real number
b) Consider the relations defined on the set of all positive integers by $\mathrm{R}_{1}=\{(a, b) / a$ divides $b\}$ and $\mathrm{R}_{2}=\{(a, b) / a$ is a multiple of $b\}$. Then find $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}-R_{2}$ and $R_{2}-R_{1}$
24. Let R be the relation represented by the matrix $M_{R}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.Find the matrices representing
(a) R^{-1}
(b) $\bar{R}(c) R^{2}$
(d) $R^{3}(e) R^{4}$
25. a) Solve $x^{4}+3 x^{3}+x^{2}-2=0$?
b) Determine the nature of the roots of the equation $x^{4}+3 x^{2}+2 x-7=0$?

