

QP CODE: 19002392

19002392

Reg No	:	
Name	:	

M.Sc. DEGREE (C.S.S) EXAMINATION, NOVEMBER 2019

First Semester

Faculty of Science

PHYSICS

Core - PH010103 - ELECTRODYNAMICS

2019 Admission Onwards

E7FAA040

Time: 3 Hours

Maximum Weight :30

Part A (Short Answer Questions)

Answer any **eight** questions. Weight **1** each.

- 1. What is electric displacement?
- 2. What is the significance of vector potential A in magnetostatics?
- 3. Show that the bound surface current $K_b = M imes \hat{n}$.
- 4. Write down the Cauchy's formula and obtain the physical dimension of Cauchy's constants.
- 5. Describe retarded potentials.
- 6. List the approximations used in obtaining the power radiated by an oscillating electric dipole and explain the physical basis of these approximations.
- 7. Explain the disturbing implications of Abraham-Lorentz formula for radiation reaction.
- 8. Explain, what is meant by a four vector.
- 9. Describe the transformation properties of Minkowski force K^{μ} under Lorentz transformation.
- 10. Write down the electromagnetic field tensor and the dual tensor.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions. Weight **2** each.

11. A point charge q is situated a distance a from the center of a grounded conducting sphere of radius R. Find the potential outside the sphere.

- 12. An infinitely long straight wire carries a slowly varying current I(t). Determine the induced electric field as a function of distance r from the wire?
- ^{13.} Consider EM wave in free space of the form $\vec{E}(x, y, z, t) = \overrightarrow{E_0}(x, y)e^{i(kz-\omega t)}$ and $\vec{B}(x, y, z, t) = \overrightarrow{B_0}(x, y)e^{i(kz-\omega t)}$. Find the relation between k and ω . Find also the relation between E_0 and B_0 . Show that E_0 and B_0 satisfy the free space Maxwell's equations.
- 14. What is the attenuation distance for a plane wave propagating in a good conductor? Express the result in terms of conductivity σ and frequency ω .
- 15. For a point charge moving in a specified trajectory w(t), compute ∇t_r .
- 16. An electron is released from rest and falls under the influence of gravity. In the first centimeter, what fraction of the potential energy lost is radiated away?
- 17. Define the four acceleration $\alpha^{\mu} = \frac{d\eta^{\mu}}{d\tau}$. Write the components α^{0} and α in terms of u and a(ordinary velocity and acceleration).
- The lowest frequency of the electromagnetic field that can propagate through a rectangular wave guide is 3 MHz. Find the dimensions of the waveguide.

(6×2=12 weightage)

Part C (Essay Type Questions) Answer any two questions. Weight 5 each.

- 19. In the static case ,show that the electromagnetic force on the charge configuration can be expressed only in terms of stress tensor at the boundary.
- 20. Explain the fundamental laws of geometrical optics. Derive Fresnel's equations for the case of polarization in the plane of incidence. Obtain the expressions for the reflection and transmission coefficients.
- 21. Discuss the potential formulation in electrodynamics. Using Coulomb and Lorentz gauge express Maxwell's equations in terms of potentials.
- 22. Illustrate that magnetism naturally arise if one treats electrostatics in the relativistic framework.

(2×5=10 weightage)