Preview

Reg No	:	
Name	:	

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021

First Semester

Faculty of Science

CORE - PH010103 - ELECTRODYNAMICS

M Sc PHYSICS, M.Sc. Space Science

2019 ADMISSION ONWARDS

94D7F95F

Time: 3 Hours

QP CODE: 21002073

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. What is meant by induced dipoles?
- 2. In regions where there is no charge Poisson's equation reduces to Laplace's equation . Does it imply the electric potential is zero everywhere? Explain.
- 3. What is the current density J of a conductor of conductivity σ placed in an electromagnetic field?
- Sketch the directions of incident, reflected and transmitted electric and magnetic fields of a monochromatic wave traveling in the z direction polarised in the x direction incident normally on the boundary separating two linear media.
- 5. Write a short note on potential formulation of electrodynamics.
- 6. What is Lienard's generalisation of Larmor formula?
- 7. List the approximations used in obtaining the power radiated by an arbitrary localized source and explain the physical basis of these approximations.
- 8. Explain proper time.
- 9. Discuss the validity of Newton's second law of motion with the principle of relativity.
- 10. Express continuity equation in covariant form.

(8×1=8 weightage)

Preview

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- ^{11.} The magnetic field of an infinite uniform surface current, $\vec{K} = k\hat{x}$, where k is a constant, flowing over the x y plane. Show that the field is independent of the distance from the plane.
- 12. A phonograph record of radius R carrying a uniform surface charge σ is rotating at constant angular velocity ω . Find its magnetic dipole moment.
- 13. Calculate the reflection coefficient for the light at an air silver interface of conductivity $6 \times 10^7 (\Omega, m)^{-1}$ at optical frequencies ($\omega = 4 \times 10^{15}/s$ assume $\mu = \mu_0$ and $\epsilon = \epsilon_0$)
- 14. Show that for plasma, frequencies greater than plasma frequency, the EM waves propagate without attenuation.
- 15. Show that the retarded potential A(r,t) satisfy the inhomogeneous wave equation $\Box^2 {f A} = -\mu_0 {f J}$.
- 16. With the inclusion of the radiation reaction force, Newton's second law for a charged particle becomes $a = \tau \dot{a} + \frac{F}{m}$, where F is the external force acting on the particle. A particle is subjected to a constant force F, beginning at time t = 0 and lasting until time T. Find the most general solution a(t) to the equation of motion in each of the two periods $(i) \ t < 0$, $(ii) \ 0 < t < T$.
- 17. Show that $\Lambda g \Lambda^T = g$, where Λ is the Lorentz transformation matrix in x direction and g (metric tensor) is a 4×4 diagonal matrix with first diagonal element -1 and all other diagonal elements 1.
- 18. Show that E.B is invariant under Lorentz transformations.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Discuss the conservation of energy in electrodynamics.
- 20. Show that the electric and magnetic field vectors are perpendicular to each other and also perpendicular to the direction of propagation of the wave. Calculate
 - 1. average value of power density transported,
 - 2. average value of momentum density stored,
 - 3. radiation pressure exerted on a perfect reflector by the electromagnetic fields.
- 21. Calculate the electric and magnetic fields of a moving point charge q moving in a specified trajectory starting from Lienard-Wiechert potentials.
- 22. Discuss the propagation of TE waves through a rectangular waveguide and obtain an expression for the cut-off frequency.

(2×5=10 weightage)

