\qquad
Name.

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2021

Third Semester

Faculty of Science
Branch I (A)-Mathematics
MT 03 C13—DIFFERENTIAL GEOMETRY
(2012-2018 Admissions)
Time : Three Hours
Maximum Weight : 30

Part A

Answer any five questions. Each question has weight 1.

1. Find the level sets for $f\left(x_{1}, x_{2}, \ldots x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$.
2. What is the tangent space to $\mathrm{SL}(3)$ at $p=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
3. Explain a geodesic in an n surface SCR^{n+1}. Also explain a geodesic flow.
4. Show that in an n-plane, parallel transport is path independent.
5. Compute the Weingarten map for the circular cylinder $x^{3}+y^{3}=a$ in R^{*} where $a \neq 0$.
6. Explain line integral with example.
7. Define convex surface and parametrized surface with example.
8. Explain global property with an example.

Part B

Answer any five questions. Each question has weight 2.
9. Find the integral curve through $p=(1,1)$ of the vector field $\mathrm{X}\left(x_{1}, x_{2}\right)=\left(-2 x_{2}, \frac{1}{2} x_{1}\right)$.
10. Define the graph of a function. Show that the graph of any function $f: \mathrm{R}^{n} \rightarrow \mathrm{R}$ is a level set for some function $F: R^{n+1} \rightarrow R$.

21000060
11. Prove that the velocity vector field along a parametrised curve α is paralled iff α is a geodesic.
12. Find the velocity speed and acceleration of the parametrized curve $\alpha(t)=\left(\cos t, \sin t, t_{2}\right)$.
13. Evaluate L_{p} for $x_{2}^{2}+x_{3}^{2}=a^{2}$ in R^{3}.
14. Compute $\nabla_{v} f$ where $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+3 x_{2}^{2}$ and $v=(1,0,2,1)$.
15. State and prove inverse function theorem for n-surface.
16. Show that parametric equation of a surface are not unique.

Part C

Answer any three questions.
Each question has weight 5.
17. (a) Show that the unit n-sphere $x_{1}^{2}+x_{2}^{2}+\ldots x_{n+1}^{2}=1$ is a connector if $n>1$.
(b) Explain (i) integral curve ; (ii) n-surface ; (iii) vector field ; (iv) orientation.
18. (a) Show that parallel transport from p to q along a piecewise smooth parametrised curve is a vector space isomorphism which preserves dot products.
(b) Explain covariant derivative with example.
19. Prove that the Weingarten map is self-adjoint.
20. Define arc length with an example. Also establish the existence of arc length.
21. Obtain necessary and sufficient conditions for $f: S \rightarrow \mathrm{R}^{\mathrm{K}}$ to be smooth where $\mathrm{S} \subset \mathrm{R}^{n+1}$ is n-surface.
22. Establish the local equivalence of surfaces and parametrised surfaces. Illustrate with example.

