

18001759

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2018

Third Semester

Faculty of Science

Branch I—(A) Mathematics

MT 03 C 13—DIFFERENTIAL GEOMETRY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** out of eight questions. Each question has weight 1.

- 1. Define a vector field and give an example of a vector field, by sketching it.
- 2. Show by an example that the set of vectors tangent at a point p of a level set might be all of \mathbb{R}_p^{n+1} .
- 3. Define the terms Gauss map and spherical image.
- 4. Show that for each $a,b,c,d \in \mathbb{R}$, the parametrized curve :

 $\alpha(t) = \left(\cos(at+b), \sin(at+b), ct+d\right) \text{ is a geodesic in the cylinder } x_1^2 + x_2^2 = 1 \text{ in } \mathbf{R}^3.$

- 5. Define a Weingarten map. Why it is called the shape operator?
- 6. State Freuet formulas for a plane curve.
- 7. Define a quadratic form associated with a self adjoint linear transformation $L: V \to V$. When it is said to be positive and negative definite.
- 8. Define a parametrized n-surface. Give example.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions out of eight. Each question has weight 2.

- 9. Sketch the typical level curves and the graph of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 10. Let U be an open set in \mathbb{R}^{n+1} and let $f: \mathbb{U} \to \mathbb{R}$ be smooth. Let $p \in \mathbb{U}$ be a regular point of f, and $c = f^{-1}(p)$. Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $\left[\nabla f(p)\right]^{\perp}$.

1/3 Turn over

18001759

- 11. Describe the spherical image when u=1 and u=2 of the given n surface oriented by $\nabla f / \| \nabla f \|$, where f is function defined on the left side of the equation $x_1^2 + x_2^2 + \ldots + x_{n+1}^2 = r^2, r > 0$.
- 12. Let $\alpha:[0,\pi]\to S^2$ be the half great circle in S^2 , running from the north pole p=(0,0,1) to the south pole q=(0,0,-1) defined by $\alpha(t)(\sin t,0,\cos t)$. Show that for $v=(p,v,v_2,0)\in S_p^2$, $p_\alpha(v)=(q,-v_1,v_2,0)$.
- 13. Compute $\nabla_v X$, where $v \in \mathbb{R}_p^{n+1}$, $p \in \mathbb{R}^{n+1}$ and X given by $X(x_1, x_2) = (x_1, x_2, x_1x_2, x_2^2)$, v = (1, 0, 0, 1), n = 1.
- 14. Find the length of the connected oriented plane curve $f^{-1}(c)$, oriented by $\nabla f / \| \nabla f \|$, where $f: \mathbf{U} \to \mathbf{R}$ and c are given by $f(x_1, x_2) = 5x_1 + 12x_2$, $\mathbf{U} = \{(x_1, x_2) : x_1^2 + x_2^2 < 169\}$, c = 0.
- 15. On each compact oriented n-surface S in \mathbb{R}^{n+1} prove that there exists a point p such that the second fundamental form at p is definite.
- $16. \ \ \, \text{Find the Gaussian curvature of the parametrized 2-surface}:$

 $\phi(\theta,\phi) = (a\cos\theta\sin\phi, a\sin\theta\sin\phi, a\cos\phi).$

 $(5 \times 2 = 10)$

Part C

Answer any **three** out of six questions. Each question has weight 5.

- 17. (a) Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for same function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
 - (b) State and prove the existence and uniqueness theorem for integrals curves of smooth tangent vector fields on n-surfaces in \mathbb{R}^{n+1} .
- 18. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $F: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .
- 19. Let C be an oriented plane curve. Prove that there exists a global parametrization of C if and only if C is connected.

18001759

- 20. (a) Prove that the Weingarten map is self adjoint.
 - (b) Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$. Prove that for $\alpha : [a,b] \to \mathbb{R}^2 [0]$ any closed piecewise smooth parametrized curve in $\mathbb{R}^2 [0]$, $\int_{\alpha} \eta = 2\pi k$ for some integer k.
- 21. (a) Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} . Prove that the Gauss-Kronecker curvature k(p) of S at p is non-zero for all $p \in \mathbb{S}$ if and only if the second fundamental form \mathfrak{I}_p of S at p is definite for all $p \in \mathbb{S}$.
 - (b) State and prove inverse function theorem for n-surfaces.
- 22. (a) Find the Gauss-Kronecker curvature of the parametrized 3-surface ϕ , where :

$$\phi(x,y,z) = (x,y,z,x^2 + y^2 + z^2).$$

(b) Let V be a finite dimensional vector space with dot product and let $L:V\to V$ be a self-adjoint linear transformation on V. Show that there exists an orthonormal basis for V consisting of eigen vectors of L.

 $(3 \times 5 = 15)$

