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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.
 

1.  Sketch the level set   for the function . Which points  of these level set fail to have tangent space equal to 

 ?

2.  Define an oriented -surface. Give an example.

3.  Describe the spherical image, when , of  oriented by .

4.  Let  and  be smooth vector fields along the parametrized curve . Prove .

5.  Define Levi-Civita parallelism. Show that if  is a parallel vector field along , then  has constant length.

6.  Write  a short note on the Weingarten map. Why is it called the shape operator of the surface.

7.  Define length of the parametrized curve . Find the length of the parametrized curve given by 

.

8.  Define an exact 1-form. Show that the integral of an exact 1-form over a compact connected oriented plane curve is always zero.

9.  Let  be an open set in  and  be a smooth map. 

a) Define differential of   

b) Show that  is independent of the choice of the parametrized curve.

10.  a) Define coordinate vector fields along a smooth map  where open in  

b) Find the coordinate vector fields along  of the parametrized torus  in  given by 

(8×1=8 weightage)
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Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.
 

11.  Given the vector field  where  then find the integral curve through an arbitrary point . Also if

the curve passes through  find the integral curve. 
 

12.  Show that the graph of a smooth real valued function on an open set  in  is an -surface. 

13.  Show that if  is a geodesic in an -surface and if  is a reparametrization of  where   then  is a

geodesic in  if and only if there exists  with  such that , .

14.  Let  be a  surface in  and let  be a geodesic in  with  . Prove a vector field  tangent to  along  is parallel

if and only if both  and the angle between  and  are constant along .

15.  Are local parametrizations of plane curves unique upto reparametrization?Justify your answer.

16.  State and prove Frenet formulas for a plane curve.

17.  Find the normal curvature of the sphere  of radius  oriented by the inward normal vector field.

18.  Find the Gaussian curvature of the cone 

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
 

19.  a) Define  level set and graph of a function  in . Also show that the graph of any function  is a level set for some

function  

b) Sketch typical level sets and graph of the  function . for  

20.  Let  be a compact connected oriented -surface in  exhibited as a level set  of a smooth function  with 

, . Prove that the Gauss map maps  onto the unit sphere .

21.   For the Weingarten map , prove that   for all .

22.  a) Prove that for each compact oriented -surface  in  there exists a point  such that the second fundamental form at  is

definite. 

b) Let  be the ellipsoid   oriented by the outward normal vector field. Find the Gauss - Kronecker curvature of  

 
 

(2×5=10 weightage)
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