QP CODE: 21000688

M Sc DEGREE (CSS) EXAMINATION, JULY 2021

Fourth Semester

Faculty of Science

Elective - ME800401 - DIFFERENTIAL GEOMETRY

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards

9B772118

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Sketch the level set $f^{-1}(1)$ for the function $f(x_1, x_2) = x_1^2 + x_2^2$. Which points p of these level set fail to have tangent space equal to $[\nabla f(p)]^{\perp}$?
- 2. Define an oriented *n*-surface. Give an example.
- 3. Describe the spherical image, when n = 2, of $x_1^2 x_2^2 \ldots x_{n+1}^2 = 4$, $x_1 > 0$ oriented by $\mathbf{N} = \frac{-\nabla f}{||\nabla f||}$
- 4. Let **X** and **Y** be smooth vector fields along the parametrized curve $\alpha : I \to \mathbb{R}^{n+1}$. Prove $(\mathbf{X} \cdot \mathbf{Y})' = \dot{\mathbf{X}} \cdot \mathbf{Y} + \mathbf{X} \cdot \dot{\mathbf{Y}}$.
- 5. Define Levi-Civita parallelism. Show that if \mathbf{X} is a parallel vector field along α , then \mathbf{X} has constant length.
- 6. Write a short note on the Weingarten map. Why is it called the shape operator of the surface.
- 7. Define length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Find the length of the parametrized curve given by $\alpha(t) = (\sqrt{2}\cos 2t, \sin 2t, \sin 2t), I = [0, 2\pi], n = 2.$
- 8. Define an exact 1-form. Show that the integral of an exact 1-form over a compact connected oriented plane curve is always zero.

Page 1/2

- 9. Let U be an open set in \mathbb{R}^n and $\varphi: U \to \mathbb{R}^m$ be a smooth map. a) Define differential of φ .
 - b) Show that $d\varphi(\mathbf{v})$ is independent of the choice of the parametrized curve.
- 10. a) Define coordinate vector fields along a smooth map $\varphi: U \to \mathbb{R}^{n+k}$, where U open in \mathbb{R}^n . b) Find the coordinate vector fields along φ of the parametrized torus φ in \mathbb{R}^3 given by $\varphi(\theta,\phi) = ((a+b\cos\phi)\cos\theta, (a+b\cos\phi)\sin\theta, b\sin\phi).$

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Given the vector field $\mathbf{X}(p) = (p, \mathbf{X}(p))$ where $\mathbf{X}(p) = (0, 1)$ then find the integral curve through an arbitrary point (a, b). Also if the curve passes through (1, 1) find the integral curve.
- 12. Show that the graph of a smooth real valued function on an open set U in \mathbb{R}^n is an *n*-surface.
- 13. Show that if $\alpha : I \to S$ is a geodesic in an *n*-surface and if $\beta = \alpha \circ h$ is a reparametrization of α where $h : \tilde{I} \to I$ then β is a geodesic in S if and only if there exists $a, b \in \mathbb{R}$ with a > 0 such that $h(t) = at + b, \forall t \in \tilde{I}$.
- 14. Let S be a 2- surface in \mathbb{R}^3 and let $\alpha : I \to S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Prove a vector field **X** tangent to S along α is parallel if and only if both $||\mathbf{X}||$ and the angle between **X** and $\dot{\alpha}$ are constant along α .
- 15. Are local parametrizations of plane curves unique upto reparametrization?Justify your answer.
- 16. State and prove Frenet formulas for a plane curve.
- 17. Find the normal curvature of the sphere $x_1^2 + x_2^2 + \ldots + x_{n+1}^2 = r^2$ of radius r > 0 oriented by the inward normal vector field.
- 18. Find the Gaussian curvature of the cone $x_1^2 + x_2^2 x_3^2 = 0$, $x_3 > 0$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- a) Define level set and graph of a function in Rⁿ⁺¹. Also show that the graph of any function f : Rⁿ → R is a level set for some function F : Rⁿ⁺¹ → R.
 b) Sketch typical level sets and graph of the function f(x₁, x₂,..., x_{n+1}) = x₁² + x₂² + ... + x_{n+1}². for n = 0, 1
- 20. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f : \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0, \forall p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .
- **21.** For the Weingarten map L_p , prove that $L_p(\mathbf{v})$. $\mathbf{w} = \mathbf{v}$. $L_p(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in S_p$.
- **22.** a) Prove that for each compact oriented *n*-surface S in \mathbb{R}^{n+1} there exists a point *p* such that the second fundamental form at *p* is *definite.*

b) Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ oriented by the outward normal vector field. Find the Gauss - Kronecker curvature of S.

(2×5=10 weightage)

