Reg No
Name

M Sc DEGREE (CSS) EXAMINATION, JULY 2021
 Fourth Semester
 Faculty of Science

 Elective - ME800401 - DIFFERENTIAL GEOMETRY

 Elective - ME800401 - DIFFERENTIAL GEOMETRY M Sc MATHEMATICS,M Sc MATHEMATICS (SF) M Sc MATHEMATICS,M Sc MATHEMATICS (SF)

 2019 Admission Onwards

 2019 Admission Onwards

 9B772118

 9B772118}

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Sketch the level set $f^{-1}(1)$ for the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$. Which points p of these level set fail to have tangent space equal to $[\nabla f(p)]^{\perp}$?
2. Define an oriented n-surface. Give an example.
3. Describe the spherical image, when $n=2$, of $x_{1}^{2}-x_{2}^{2}-\ldots-x_{n+1}^{2}=4, x_{1}>0$ oriented by $\mathbf{N}=\frac{-\nabla f}{\|\nabla f\|}$.
4. Let \mathbf{X} and \mathbf{Y} be smooth vector fields along the parametrized curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$. Prove $(\mathbf{X} \cdot \mathbf{Y})^{\prime}=\dot{\mathbf{X}} \cdot \mathbf{Y}+\mathbf{X} \cdot \dot{\mathbf{Y}}$.
5. Define Levi-Civita parallelism. Show that if \mathbf{X} is a parallel vector field along α, then \mathbf{X} has constant length.
6. Write a short note on the Weingarten map. Why is it called the shape operator of the surface.
7. Define length of the parametrized curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$. Find the length of the parametrized curve given by $\alpha(t)=(\sqrt{2} \cos 2 t, \sin 2 t, \sin 2 t), I=[0,2 \pi], n=2$.
8. Define an exact 1-form. Show that the integral of an exact 1 -form over a compact connected oriented plane curve is always zero.
9. Let U be an open set in \mathbb{R}^{n} and $\varphi: U \rightarrow \mathbb{R}^{m}$ be a smooth map.
a) Define differential of φ.
b) Show that $d \varphi(\mathbf{v})$ is independent of the choice of the parametrized curve.
10. a) Define coordinate vector fields along a smooth map $\varphi: U \rightarrow \mathbb{R}^{n+k}$, where U open in \mathbb{R}^{n}.
b) Find the coordinate vector fields along φ of the parametrized torus φ in \mathbb{R}^{3} given by $\varphi(\theta, \phi)=((a+b \cos \phi) \cos \theta,(a+b \cos \phi) \sin \theta, b \sin \phi)$.

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Given the vector field $\mathbf{X}(p)=(p, \mathbf{X}(p))$ where $\mathbf{X}(p)=(0,1)$ then find the integral curve through an arbitrary point ($a, b)$. Also if the curve passes through $(1,1)$ find the integral curve.
12. Show that the graph of a smooth real valued function on an open set U in \mathbb{R}^{n} is an n-surface.
13. Show that if $\alpha: I \rightarrow S$ is a geodesic in an n-surface and if $\beta=\alpha \circ h$ is a reparametrization of α where $h: \tilde{I} \rightarrow I$ then β is a geodesic in S if and only if there exists $a, b \in \mathbb{R}$ with $a>0$ such that $h(t)=a t+b, \forall t \in \tilde{I}$.
14. Let S be a 2 - surface in \mathbb{R}^{3} and let $\alpha: I \rightarrow S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Prove a vector field \mathbf{X} tangent to S along α is parallel if and only if both $\|\mathbf{X}\|$ and the angle between \mathbf{X} and $\dot{\alpha}$ are constant along α.
15. Are local parametrizations of plane curves unique upto reparametrization? Justify your answer.
16. State and prove Frenet formulas for a plane curve.
17. Find the normal curvature of the sphere $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n+1}^{2}=r^{2}$ of radius $r>0$ oriented by the inward normal vector field.
18. Find the Gaussian curvature of the cone $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0, x_{3}>0$.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each

19. a) Define level set and graph of a function in \mathbb{R}^{n+1}. Also show that the graph of any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.
b) Sketch typical level sets and graph of the function $f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n+1}^{2}$. for $n=0,1$
20. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0, \forall p \in S$. Prove that the Gauss map maps S onto the unit sphere S^{n}.
21. For the Weingarten map L_{p}, prove that $L_{p}(\mathbf{v}) \cdot \mathbf{w}=\mathbf{v} . L_{p}(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in S_{p}$.
22. a) Prove that for each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.
b) Let S be the ellipsoid $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$ oriented by the outward normal vector field. Find the Gauss - Kronecker curvature of S.
