Reg No :

Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, JANUARY 2022

Fifth Semester

CORE COURSE - MM5CRT02 - DIFFERENTIAL EQUATIONS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science \&

B.Sc Computer Applications Model III Triple Main 2017 Admission Onwards
 F936F50F

Time: 3 Hours
Max. Marks : 80

Part A
 Answer any ten questions.
 Each question carries 2 marks.

1. Find the general solution of the differential equation $y^{\prime}=x e^{x^{2}}$
2. Solve the differential equation $y^{\prime}-y \tan x=0$
3. Determine whether the equation $(\sin x \tan y+1) d x-\cos x \sec ^{2} y d y=0$ is exact.
4. Find the general solution of $y^{11}+4 y^{1}-5 y=0$
5. Find a particular solution of $y^{11}-2 y^{1}+y=6 e^{x}$
6. Finf the general solution of $y^{(3)}-3 y^{(2)}+2 y^{(1)}=0$
7. Find the differential equation of the general solution $A e^{3 x}+B e^{5 x}$
8. Define interval of convergence of a power series.
9. State Isaac Newton's general binomial theorem.
10.

Find functions $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$ and R^{\prime} so that $\mathrm{PP}^{\prime}+\mathrm{QQ} \mathrm{Q}^{\prime}+\mathrm{RR} \mathrm{R}^{\prime}=0$ if $P=x\left(y^{2}+z\right), Q=-y\left(x^{2}+z\right), R=z(x+y)$ and verify it.
11. Generate a partial differential equation by eliminating the arbitrary function f from $z=x y+f\left(x^{2}+y^{2}\right)$.
12. Give an example of a partial differential equation in three independent variables

Part B

Answer any six questions.

Each question carries 5 marks.

13. Solve the differential equation $\sin 2 x \frac{d y}{d x}=y+\tan x$
14. Solve the differential equation $x y^{\prime}=2 x+3 y$
15. Solve the differential equation $y d x+\left(2 x-y e^{y}\right) d y=0$
16. Solve $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
17. Find the particular solution of $y^{11}+2 y^{1}+5 y=e^{-x} \sec 2 x$
18. Find the general solution of the differential equation
$y^{(4)}+2 y^{(3)}-2 y^{((2)}-6 y^{(1)}+5 y=0$
19. Define an ordinary point of a differential equation. Check whether 0 is an ordinary point of
a) $y^{\prime \prime}+x y^{\prime}+y=0$
b) $y^{\prime \prime}-y^{\prime}+x y=0$.
20. Define exponents of a differential equation at a regular singular point.

Prove that 0 is a regular singular point of the differential equation $4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0$ and then find the exponents for 0.
21. Find the general solution of $(y(x+y)+a z) p+(x(x+y)-a z) q=z(x+y)$

Part C

Answer any two questions.
Each question carries 15 marks.
22. i)Show that the family of ellipse $\frac{x^{2}}{a^{2}+c}+\frac{y^{2}}{b^{2}+c}=1$ is self orthogonal.
ii)Find the orthogonal trajectory of family of circle $(x-c)^{2}+y^{2}=c^{2}$
23. The equation $x^{2} y^{11}+x y^{1}+\left(x^{2}-1 / 4\right) y=0$ is a special case of Bessel"s equation .Verify that $y_{1}(x)=x^{-1 / 2} \sin x$ is a solution for $\mathrm{x}>0$ and find the general solution
24. Use the method of Frobenius series to solve $2 x y^{\prime \prime}+(x+1) y^{\prime}+3 y=0$
25. Find the equation of the integral surface of the differential equation $(x-y) p+(y-x-z) q=z$, which passes through the circle $z=1, x^{2}+y^{2}=1$.

