BSc DEGREE (CBCS) EXAMINATION, FEBRUARY 2020

 Fifth Semester

 Fifth Semester
 Core Course - MM5CRT02 - DIFFERENTIAL EQUATIONS

B.Sc Computer Applications Model III Triple Main ,B.Sc Mathematics Model I,B.Sc Mathematics Model II

Computer Science
2017 Admission Onwards
51915010
Time: 3 Hours
Maximum Marks :80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Verify that $c e^{k x}$ is a solution of the differential equation $y^{\prime}=k y$
2. Find the orthogonal trajectory of the family of curves $x^{2}-y^{2}=c^{2}$
3. Make the equation $y d x+\left(x^{2} y-x\right) d y=0$ exact.
4. Write second order homogeneous linear differential equation with constant coefficient
5. Find a particular solution of $y^{11}-y^{1}-6 y=20 e^{-2 x}$
6. Find the general solution of $y^{11}-y=0$, when $y_{1}(x)=e^{x}$
7. Find the differential equation of the general solution $A e^{x}+B e^{-2 x}$
8. Define radius of convergence of a power series.
9. Determine the nature of the point $x=0$ for $x y^{\prime \prime}+(\sin x) y=0$.
10. Find functions $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$ and R^{\prime} so that $P P^{\prime}+Q Q^{\prime}+R R^{\prime}=0$ if $P=y+z x, Q=-(x+y z), R=\left(x^{2}-y^{2}\right) z$ and verify it.
11. Generate a partial differential equation by eliminating the constants a and c from $x^{2}+y^{2}+(z-c)^{2}=a^{2}$.
12. Give the general solution of Lagrange's first order partial differential equation.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Find a curve in the xy plane that passes through $(0,-2)$ and whose tangent line at a point (x, y) has slope $\frac{2 x}{y^{2}}$
14. Solve the equation $(1+y) \frac{d y}{d x}=1-x$.
15. Solve the differential equation $\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0$
16. Solve $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}=0$
17. Find the general solution of $y^{(3)}-6 y^{(2)}+11 y^{(1)}-6 y=0$
18. Find the general solution of the differential equation $y^{(4)}+4 y^{(3)}+6 y^{(2)}+4 y^{(1)}+y=0$
19. Find a power series solution of the differential equation $y^{\prime}=y$.
20. Define exponents of a differential equation at a regular singular point .

Prove that 0 is a regular singular point of the differential equation $x y^{\prime \prime}+2 y^{\prime}+x y=0$ and then find the exponents for 0 .
21. Find the general solution of $\left(\frac{b-c}{a}\right) y z p+\left(\frac{c-a}{b}\right) z x q=\left(\frac{a-b}{c}\right) x y$

Part C

Answer any two questions.

Each question carries 15 marks.

22. (i)Find the solution of initial value problem $y^{\prime}-2 x y=6 x e^{x^{2}}, y(1)=1$
(ii)Solve the differential equation $y^{2} d x+(3 x y-1) d y=0$
23. 1 find a particular solution of $y^{11}+y=\cot ^{2} x$

2 Find the general solution of $\left(x^{2}-1\right) y^{11}-2 x y^{1}+2 y=\left(x^{2}-1\right)^{2}$
24. Verify that 0 is an ordinary point, and then find the power series solution of $y^{\prime \prime}+x y^{\prime}+y=0$.
25. Find the integral surface satisfying $x\left(x^{2}+3 y^{2}\right) p-y\left(3 x^{2}+y^{2}\right) q=2 z\left(y^{2}-x^{2}\right)$.
$(2 \times 15=30)$

