

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Choice Based Core Course - PH6CBT03 - COMPUTATIONAL PHYSICS

B.Sc Physics Model I,B.Sc Physics Model II Computer Applications,B.Sc Physics Model III Electronic Equipment Maintenance,B.Sc Physics Model II Applied Electronics

2017 Admission Onwards

3897A7BA

Time: 3 Hours

Marks: 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

.

- 1. What is meant by pivotal equation?
- 2. What is a lower triangular matrix?
- 3. Which are the two iterative methods for the solution of a system of linear algebraic equations?
- 4. What is Gauss-Seidel iterative method?
- 5. What do you mean by least square fitting?
- 6. Explain the least square method to fit an exponential function.
- 7. Explain any two difference operators.
- 8. Write down Newton's interpolation polynomial.
- 9. Write a general quadrature formula for equidistant ordinates.
- 10. Write Taylor's series formula.
- 11. What is the other name for Heuns method?
- 12. Write down the second order R-K algorithm.

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Find a root of the equation x^3 -3x-5=0 by the method of false position.
- ^{14.} Use the secant method to estimate the root of the equation $x^2-4x-10=0$ with the initial estimates of $x_1=4$ and $x_2=2$.
- 15. Locate root of the equation $x^2+x-2=0$ using the fixed point method.
- 16. Prove that $f(4)=f(3)+\Delta f(2)+\Delta^2 f(1)+\Delta^3 f(1)$.
- 17. Use Lagrange's formula to find the value of y at x = 6 from the following data.

Х	3	7	9	10	
у	168	120	72	63	

18. Find the first two derivatives of $x^{1/3}$ at x=50 and x=56 given the table below:

x	50	51	52	53	54	55	56
y=x ^{1/3}	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

19. Find the value of x for which y is minimum and find the minimum value from the table.

x	0.60	0.65	0.70	0.75	
у	0.6221	0.6155	0.6138	0.6170	

- 20. Evaluate $\int_{0}^{1} e^{x} dx$ by Simpson's one-third rule correct to five decimal places, by proper choice of h.
- 21. Given y'= -y and y(0)=1, determine the values of y at x=(0.01), (0.02),(0.03) and (0.04) by Euler method.

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. Find a root of the following equation using the bisection method xlog₁₀x=1.2 lying between 2 and 3.
- Find a positive root of each of the following equation using Newton-Raphson method 4xe^x=0.

						.(•) 9
х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

24. Using Newton's divided difference formula evaluate f(8) given that

25.

Evaluate $\int_{-3}^{3} x^4 dx$ by using Trapezoidal rule and verify the results by actual integration.

(2×15=30)