B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021 Sixth Semester CORE - MM6CRT03 - COMPLEX ANALYSIS

Common for B.Sc Mathematics Model I \& B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

2846D059
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Find the domain of definition of $f(z)=\frac{1}{1-|z|^{2}}$
2. Show that $\mathrm{f}(\mathrm{z})=\bar{z}$ is no where differentiable.
3. Prove that if the real part of an analytic function is constant, then the function is constant
4. Prove that $\log (1+\mathrm{i})^{2}=2 \log (1+\mathrm{i})$, but $\log (-1+\mathrm{i})^{2} \neq 2 \log (-1+\mathrm{i})$
5. Prove that $e^{i z}=\cos z+i \sin z$
6. Evaluate $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t$.
7. Evaluate $\int_{C} z e^{-z} d z$ where C is the circle $|\mathrm{z}|=1$.
8. Define simply connected and multiply connected domain.
9. Show that when $z \neq 0, \frac{\sin \left(z^{2}\right)}{z^{4}}=\frac{1}{z^{2}}-\frac{z^{2}}{3!}+\frac{z^{6}}{5!}-\frac{z(10)}{7!}+\ldots$, assuming a series expansion of $\sin z$
10. Obtain a Maclaurin series expansion of $z^{2} e^{3 z}$
11. State a necessary and sufficient condition for an isolated singular point z_{0} of a function $f(z)$ to be a pole of order m. Also give the formula for the residue at z_{0}.
12. Prove that if the improper integral over $-\infty<x<\infty$ exists, then its Cauchy Principal Value exists.

Part B

Answer any six questions.

Each question carries 5 marks.

13. Show that the function defined by $f(z)=\left\{\begin{array}{ll}\frac{(x+y)^{2}}{x^{2}+y^{2}} & \text { if } z \neq 0 \\ 1 & \text { if } z=0\end{array}\right.$ is discontinuous at the origin.
14. Prove that $|\exp (-2 z)|<1$ if and only if $\operatorname{Re}(z)>0$
15. Find where $\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}$ is analytic.
16. Evaluate $\int_{C} \frac{z+2}{z} d z$, where C is the semicircle $z=2 e^{i \theta}, \quad(\pi \leq \theta \leq 2 \pi)$.
17. Prove that a function f is analytic at a given point, then its derivative of all orders are analytic at that point.
18. Prove that any polynomial of degree n has atleast one zero.
19. Give two Laurent series expansions in powers of z for the function $f(z)=\frac{1}{z^{2}(1-z)}$ and specify the regions in which those expansions are valid.
20. Using residues, evaluate $\int_{C} \frac{1}{z(z-2)^{2}} d z$, where C is the unit circle $|z-2|=1$
21. State and prove Cauchy's Residue Theorem.

Part C

Answer any two questions.
Each question carries 15 marks.
22. Prove that the function $u(x, y)=e^{x}(x \sin y+y \cos y)$ is harmonic and determine in terms of z,the most general analytic functon $f(z)$ with real part $u(x, y)$
23. - State and Prove Cauchy's Integral Formula.

- Evaluate $\int_{|z|=1} \frac{\cos z}{z(z-4)} d z$
a) State and prove a necessary and sufficient condition for convergence of sequence $z_{n}=x_{n}+i y_{n}$ of complex numbers.
b) Using this derive a necessary and sufficient condition for convergence of series $\sum_{n=1}^{\infty} z_{n}$ of complex numbers, where $z_{n}=x_{n}+i y_{n}$.
c) Prove that if a series of complex numbers converges, then the $n^{t h}$ term converges to zero, as n tends to infinity.

25. Explain the three types of isolated singular points of a complex function with examples. Verify the examples with their series representations.
