

B.Sc DEGREE (CBCS) EXAMINATION, APRIL 2021

Sixth Semester

CORE - MM6CRT03 - COMPLEX ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

2846D059

Time: 3 Hours

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. Find the domain of definition of $f(z) = \frac{1}{1 |z|^2}$
- 2. Show that $f(z)=\overline{z}$ is no where differentiable.
- 3. Prove that if the real part of an analytic function is constant, then the function is constant
- 4. Prove that Log $(1+i)^2 = 2Log (1+i)$, but Log $(-1+i)^2 \neq 2Log (-1+i)$
- 5. Prove that e^{iz}=cos z+i sin z
- 6. Evaluate $\int_{1}^{2} (\frac{1}{t} i)^2 dt$.
- 7. Evaluate $\int_C z e^{-z} dz$ where C is the circle |z|=1.
- 8. Define simply connected and multiply connected domain.
- Show that when $z \neq 0$, $\frac{\sin(z^2)}{z^4} = \frac{1}{z^2} \frac{z^2}{3!} + \frac{z^6}{5!} \frac{z^{(10)}}{7!} + \dots$, assuming a series expansion 9 of $\sin z$
- 10. Obtain a Maclaurin series expansion of z^2e^{3z}
- 11. State a necessary and sufficient condition for an isolated singular point z_0 of a function f(z) to be a pole of order m. Also give the formula for the residue at z_0 .
- 12. Prove that if the improper integral over $-\infty < x < \infty$ exists, then its Cauchy Principal Value exists.

Page 1/3

 $(10 \times 2 = 20)$

Max. Marks: 80

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Show that the function defined by $f(z) = \begin{cases} \frac{(x+y)^2}{x^2+y^2} & \text{if } z \neq 0\\ 1 & \text{if } z = 0 \end{cases}$ is discontinuous at the origin.
- 14. Prove that |exp(-2z)| < 1 if and only if Re(z) > 0
- 15. Find where $\tan^{-1} z = rac{i}{2} \log rac{i+z}{i-z}$ is analytic.
- 16. Evaluate $\int_C rac{z+2}{z} dz$, where C is the semicircle $z=2e^{i\theta}, \ (\pi\leq\theta\leq 2\pi).$
- 17. Prove that a function f is analytic at a given point, then its derivative of all orders are analytic at that point.
- 18. Prove that any polynomial of degree n has atleast one zero.
- 19. Give two Laurent series expansions in powers of z for the function $f(z) = \frac{1}{z^2(1-z)}$ and specify the regions in which those expansions are valid.

20. Using residues, evaluate
$$\int_C rac{1}{z(z-2)^2} dz$$
 , where C is the unit circle $|z-2|=1$

21. State and prove Cauchy's Residue Theorem.

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

- 22. Prove that the function u(x,y)=e^x(x siny+y cosy) is harmonic and determine in terms of z,the most general analytic functon f(z) with real part u(x,y)
- State and Prove Cauchy's Integral Formula.

• Evaluate
$$\int_{|z|=1} \frac{\cos z}{z(z-4)} dz$$

- a) State and prove a necessary and sufficient condition for convergence of sequence $z_n = x_n + iy_n$ of complex numbers.
 - b) Using this derive a necessary and sufficient condition for convergence of series $\sum_{i=1}^{\infty} z_{i}$ of complex numbers, where $z_{i} = x_{i} + iu_{i}$

$$\sum_{n=1} z_n$$
 of complex numbers, where $z_n = x_n + i y_n.$

c) Prove that if a series of complex numbers converges, then the n^{th} term converges to zero, as n tends to infinity.

25. Explain the three types of isolated singular points of a complex function with examples. Verify the examples with their series representations.

(2×15=30)