

QP CODE: 20100569

Reg No :

Name :

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020 Sixth Semester

Core course - MM6CRT03 - COMPLEX ANALYSIS

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

69EDE29F

Time: 3 Hours Maximum Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Find the imaginary part of the function $f(z)=\tan z$
- 2. Show that f(z) is continuous at z_{0} , so is |f(z)|
- 3. Solve the equation $e^z=1+i$
- 4. Find ii and its principal value
- 5. Evaluate cosh⁻¹(-1)
- 6. Define Simple closed curve.
- 7. If C is any simple closed contour, then evaluate $\int_C exp(z^3)dz$.

8. Evaluate
$$\int_{|z|<2} rac{ze^z}{(z^2+9)^5} dz$$

- 9. Evaluate $lim_{n
 ightarrow\infty}z_n$ where $z_n=rac{-2+i(-1)^n}{n^2}$
- 10. Find the Laurent's series that represents the function $f(z)=z^2sin(\frac{1}{z^2})$ in the domain $0<|z|<\infty$, given the expansion of $\sin z$
- 11. Define isolated singular points of a complex function with an example.
- 12. Show that the existence of Cauchy Principal Value does not imply the existence of $\int_{\infty}^{-\infty}f(x)dx$

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

Page 1/2

Turn Over

- 13. Prove that f(z)=f(z)= $\begin{cases} \frac{Im\ z^2}{|z|^2} & \text{if } z\neq 0 \\ 0 & \text{if } z=0 \end{cases}$ satisfies CR equations and is not differentiable at z=0
- 14. Find the harmonic conjugate of $v = log(x^2 + y^2) + x 2y$
- 15. Expand sin z using exponentials
- 16. State and prove Cauchy's integral formula.
- 17. If f(z) is analytic within and on a circle C given by $|z-z_0|=R$ and if $|f(z)|\leq M$ for every z on C,Prove that $|f^n(z_0)|\leq M\frac{n!}{R^n}$
- 18. State and prove maximum modulus principle.
- 19. Obtain a power series expansion of e^z in powers of z-1 when $|z-1| < \infty$.
- 20. Define the three types of isolated singularities of a complex function f(z).
- **21**. Find the residue at z=0 of $off(z)=rac{1}{z(e^z-1)}$.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. a) If f(z)=u(x,y)+iv(x,y) be an analytic function. Then prove the following:
 - i) u(x,y)=constant implies f(z) is constant
 - ii) v(x,y)=constant imples f(z) is constant
 - iii) |f(z)|=constant implies f(z) is constant
 - iv) arg(f(z))=constant implies f(z) is constant
 - b) Find an analytic function f(z) with real part x^3 - $3xy^2$
- 23. Evaluate $\int_c f(z)dz$, where $f(z)=\exp(\pi\bar{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1+i and i, the orientation of C being in the counter clockwise direction.
- **24**. (a) Assuming the series expansion of e^z , find a Maclaurin series expansion of $\sin z$
 - (b) Use the series expansion of $\sin z$ to obtain the series expansions of $\cosh z$ and $\sinh z$ about $z_0=0$
 - (c) Hence deduce an expansion of $\cosh z$ about $z_0 = -2\pi i$
- 25. State and prove Cauchy's Residue Theorem. Using the theorem, evaluate $\int_C rac{e^{-z}}{z^2}dz$, where C is the circle |z|=3

 $(2 \times 15 = 30)$

