QP CODE: 20100569

Reg No	:
Name	

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020 Sixth Semester Core course - MM6CRT03 - COMPLEX ANALYSIS

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science

2017 Admission Onwards
2A6911B0
Time: 3 Hours
Marks: 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Find $f^{\prime}(z)$ where $f(z)=z \operatorname{Im} z$
2. Find the singular points of the function $\mathrm{f}(\mathrm{z})=\frac{z^{3}+7}{z^{2}-5 z+6}$
3. Find the real part of $\mathrm{e}^{-3 z}$?
4. Find $i^{-2 i}$.
5. Define the hyperbolic sine and hyperbolic cosine of a complex variable z
6. Evaluate $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t$.
7. State Cauchy-Goursat Theorem.
8. Evaluate $\int_{C} \frac{e^{z}}{z-2} d z, \mathrm{C}$ is the circle $|\mathrm{z}|=3$.
9. Define the convergence of an infinite series of complex numbers.
10. Derive the Maclaurin series expansion for $f(z)=\cos z$, using the definition of $\cos z=\frac{e^{i z}+e^{-i z}}{2}$
11. Find the residue at $z=0$ of $f(z)=z \cos \left(\frac{1}{z}\right)$
12. Define removable singularity of a point $f(z)$. Why it is called so?
$||\mid$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Express the function $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$ where $z=x+i y$ in terms of z
14. Let $\mathrm{f} f(z)= \begin{cases}\frac{z^{3}}{z^{2}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}$

Prove that
a) $f(z)$ is continuous everywhere on C
b) The complex derivative $f(0)$ does not exist
15. Find an analytic function $\mathrm{f}(\mathrm{z})$ in terms of z and with real part $u=y-\frac{1}{2} y^{2}+\frac{1}{2} x^{2}$
16. Evaluate $\int_{C} \frac{z+2}{z} d z$, where C is the semicircle $z=2 e^{i \theta}, \quad(0 \leq \theta \leq \pi)$.
17. State and prove Cauchy's inequality.
18. State and prove Fundamental theorem of Algebra
19. Assuming a series expansion of e^{z}, show that $z \cosh z^{2}=\sum_{n=0}^{\infty} \frac{z^{4 n+1}}{(2 n)!} d z,|z|<\infty$
20.

State a necessary and sufficient condition for an isolated singular point z_{0} of a function $f(z)$ to be a pole of order m and the formula for residue at z_{0} of $f(z)$. Find the residue at $z=3 i$ of $f(z)=\frac{z+1}{z^{2}+9}$.
21. Define the improper integral of $f(x)$ over $-\infty<x<\infty$ and its Cauchy Principal Value. Show that the existence of Cauchy Principal Value does not imply the existence of $\int_{-\infty}^{\infty} f(x) d x$.

Part C

Answer any two questions.
Each question carries 15 marks.
22. Prove that 1$) \sin ^{-1} z=-i\left[\log i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right]$.Hence deduce $\tan ^{-1} z$
2) Evaluate $\tan ^{-1}(1+\mathrm{i})$
23.

- State and Prove Cauchy's Integral formula.
- Find the value of $\int_{C} \frac{1}{\left(z^{2}+4\right)^{2}} d z$, where C is the circle $|z-i|=2$ in the positive sense.

24. a) Derive the Laurent series expansion of $\frac{e^{z}}{(z+1)^{2}}$ in terms of $z+1$, if $0<|z+1|<\infty$ b) Let $f(z)=\frac{1}{(z-i)^{2}}$. Use Laurent series expansion to prove that $\int_{C} \frac{d z}{(z-i)^{-n+3}}=2 \pi i, n=2$
c) Show that for $0<|z-1|<2 \frac{z}{(z-1)(z-2)}=\frac{-1}{2(z-1)}-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+1}}$
25. State and prove Cauchy's Residue Theorem. Using the theorem, evaluate $\int_{C} \frac{5 z-2}{z(z-1)} d z$, where C is the circle $|z|=2$.
