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Part A

Answer any ten questions.

Each question carries 2 marks.
 

1.  Find f '(z) where f(z) =z Im z

2.  Find the singular points of the function f(z)=

3.  Find the real part of e-3z?

4.  Find i-2i.

5.  Define the hyperbolic sine and hyperbolic cosine of a complex variable z

6.  Evaluate 

7.  State Cauchy-Goursat Theorem.

8.  Evaluate  C is the circle |z|=3.

9.  Define the convergence of an infinite series of complex numbers.

10.  Derive the Maclaurin series expansion for , using the definition of 
 

11.  Find the residue at  of 
 

12.  Define removable singularity of a point . Why it is called so?
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Part B

Answer any six questions.

Each question carries 5 marks.
 

13.  Express the function f(z)=x2-y2 -2y+i(2x-2xy)  where z=x+iy in terms of z

14.  
Let f    

Prove that 
a) f(z) is continuous everywhere on C

b) The complex derivative f'(0) does not exist

15.  Find an analytic function f(z) in terms of z and with real part 

16.  Evaluate , where C is the semicircle 

17.  State and prove Cauchy's inequality.

18.  State and prove Fundamental theorem of Algebra

19.  Assuming a series expansion of show that   

20.  State a necessary and sufficient condition for an isolated singular point of a function to be a
pole of order and  the formula for residue at  of . Find the residue at of .

21.  Define the improper integral of over  and its Cauchy Principal Value. Show that

the existence of Cauchy Principal Value does not imply the existence of .

 

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.
 

22.  Prove that 1)  .Hence deduce tan-1z 

                 2) Evaluate tan-1(1+i)

23.  
State and Prove Cauchy's Integral formula.
Find the value of , where C is the circle  in the positive sense.
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24.  a)    Derive the Laurent series expansion of  in terms of  , if 

b)   Let  . Use Laurent series expansion to prove that     

c)   Show that for         

25.  State and prove Cauchy’s Residue Theorem. Using the theorem, evaluate , where C is the

circle .

(2×15=30)
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