\qquad

Name.

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2020

Fourth Semester

Faculty of Science
Branch I-(A)—Mathematics
MT04 E02—COMBINATORICS
(2012 Admission onwards)

Part A

Answer any five questions. Each question has weight 1.

1. (a) Find the number of diagonals of a 80 -sided polygon.
(b) If $\mathrm{C}(n, 8)=\mathrm{C}(n, 6)$ find $\mathrm{C}(n, 2)$.
2. In how many ways can $n+1$ different prizes to be awarded to n students in such a way that each student has at least one prize?
3. Explain the Piegeon principle with an illustration.
4. Prove that $R(4,4) \leq 18$ and $R(3,4) \leq 9$.
5. Show that for $n \in \mathrm{~N}$ with $n \leq 3, \varphi(n)$ is always even.
6. State the principle of inclusion and exclusion.
7. Differentiate between ordinary generating function and exponential generating function.
8. Outline the method of solving a recurrence relation.

Part B

Answer any five questions.
Each question has weight 2.
9. Give both algebraic and combinatorial proof for $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$.
10. A committee of 8 is to be selected out of 6 males and 8 females. How many ways can be there so that males may not be outnumbered?
11. For all integers $p, q \geq 2$ let $\mathrm{R}(p-1, q)$ and $\mathrm{R}(p, q-1)$ be even. Prove that

$$
\mathrm{R}(p, q) \leq \mathrm{R}(p-1, q)+\mathrm{R}(p, q-1)-1
$$

12. (a) Explain generalised Piegeonhole principle with an example.
(b) Write a note on the origin of Ramsey numbers.
13. Find the number of non-negative integer solutions of $x_{1}+x_{2}+x_{3}=12$ where $x_{1} \geq 5, x_{2} \geq 6, x_{3} \geq 7$.
14. Define Euler function. Obtain a formula to compute it.
15. Solve $a_{\mathrm{n}}-5 a_{\mathrm{n}-1}+6 a_{\mathrm{n}-2}=2$ given $a_{0}=1$ and $a_{1}=-1$.
16. In how many ways can four letters of the word EXAMINATION be arranged ?

Part C
 Answer any three questions.
 Each question has weight 5.

17. (a) How many numbers lying between 3000 and 4000 and divisible by 5 can be formed with the digits $3,4,5,6,7$ and 8 repetition of the digits are not allowed?
(b) Find the number of r element multi-subsets of a set containing n elements.
18. (a) Let S be the set of natural numbers whose digits are chosen from $\{1,3,5,7\}$ such that no digits are repeated. Find $|S|$ and $\sum_{n \in s} n$.
(b) Solve $a_{\mathrm{n}}=\sqrt{3} a_{\mathrm{n}-1}-a_{\mathrm{n}-2}$ for $n \geq 2$ where $a_{0}=3$ and $a_{1}=2$.
19. State the problem of Tower of Hanoi and solve it using a recurrence relation.
20. Let ABC be an equilateral triangle and \in the set of all points contained in the 3 line segments AB , BC, CA (including A, B, C). Show that for every partition \in into 2 disjoint subsets, at least one of the 2 subsets contains the varities of a right angled triangle.
21. Prove $\mathrm{S}(r, r-1)=\binom{r}{2}$ and $\mathrm{S}(r, n)=\mathrm{S}(r-1, n-1)+n \mathrm{~S}(r-1, n) ; r, n \in \mathrm{~N}$ with $r \geq n$.
22. Explain the Sieve of Eratosathenes algorithm. Use it to find all prime numbers less than or equal to 50 .

$$
(3 \times 5=15)
$$

