\qquad Name : \qquad

B.Sc DEGREE (CBCS)EXAMINATION, MARCH 2021
 Third Semester
 Core Course - MM3CRT01 - CALCULUS

Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards
AA22FEDD
Time: 3 Hours
Max. Marks : 80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. State Taylor's Therom.
2. Define point of inflection.
3. Find $\frac{d s}{d x}$ for the curve $y=\cosh \left(\frac{x}{c}\right)$.
4. Find the asymptotes parallel to co-ordinate axes of the curve $x^{4}+x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)=0$
5. Find $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ if $f(x, y)=x^{2}-y^{2}$
6. If $w=f(x)$ and $x=g(r, s)$, then what will be $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$
7. Explain the method of Lagrange multipliers to find the extreme values of a function $f(x, y, z)$ subject to a constraint $g(x, y, z)=0$
8. If $R(y)$ and $r(y)$ denote the outer and inner radius of cross section of a solid of revolution about Y-axis, with hole at $y ; c \leq x \leq d$. Find the volume of solid.
9. Explain Shell formula for finding volume of solid obtained by revolving a bounded region about a vertical line.
10. The line segment $x=1-y ; 0 \leq y \leq 1$ is revolved about the Y -axis to generate the cone. Find its lateral surface area (which excludes base area).
11. State Fubini's theorem (First form).
12. Find the cylindrical coordinate equation for the cylinder $x^{2}+(y-1)^{2}=1$.

Part B

Answer any six questions.

Each question carries 5 marks.

13. Expand $\sin ^{-1} x$ using Maclaurin's series.
14. Find the envelope of family of straight line $\mathrm{y}=\mathrm{mx}+\sqrt{a^{2} m^{2}+b^{2}}, \mathrm{~m}$ being the parameter.
15. Find all local extreme values and saddle point, if any, of the function
$f(x, y)=x^{2}+y^{2}-x y-2 x$.
16. Find the absolute maximum and minimum values $f(x, y)=x^{2}+y^{2}$ on the triangular plate in the first quadrant bounded by the lines $x=0, y=0, y+2 x=2$.
17. A pyramid $\sqrt{3} \mathrm{~m}$ high has a square base that is $\sqrt{3} \mathrm{~m}$ on a side. The cross section of the pyramid perpendicular to the altitude $x \mathrm{~m}$ down from the vertex is a square $x \mathrm{~m}$ on a side. Find the volume of the pyramid.
18. The region between the curve $y=\sqrt{x} ; 0 \leq x \leq 4$ and the X -axis is revolved about the X -axis to generate a solid. Find its volume.
19. Sketch the region of integration and write an equivalent double integral of $\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 3 y d x d y$ with the order of integration reversed.
20. Find the area of the region R bounded by $y=2 x^{2}$ and $y^{2}=4 x$.
21. Find the average value $f(x, y, z)=x^{2}+9$ over the cubical region D bounded by the coordinate planes $x=2, y=2$ and $z=2$ in the first octant.

Part C

Answer any two questions.
Each question carries 15 marks.
22. a) Find the co-ordinates of the centure of curvature at the point (x, y) on the parabola $y^{2}=4 a x$ and hence find its evolute.
b) In the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, show that the radius of curvature at an end of the major axis is equal to semi-latus rectumof the ellipse.
23. (a). If $u=\sin ^{-1}\left(\frac{x-y}{x+y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$
(b). Verify that $\frac{\partial^{2} w}{\partial x \partial y}=\frac{\partial^{2} w}{\partial y \partial x}$ if $w=x^{y}+\sin (x y)$
(c). Find the point $P(x, y, z)$ closest to the origin on the plane $2 x+y-z=5$
24. (a). The region bounded by the curve $y=\sqrt{4 x-x^{2}}$, the X -axis and the line $x=2$ is revolved about the X -axis to generate a solid. Find its volume.
(b). Find the length of the arc of the semi cubical parabola $y^{2}=x^{3}$ extending from the origin to the point $(1,1)$.
25. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$ by applying the transformation $u=x+y, v=y-2 x$.

