B.Sc. DEGREE (CBCS) EXAMINATION, OCTOBER 2019

Third Semester

CORE COURSE - MM3CRT01-CALCULUS

(Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science) 2017 Admission Onwards

24282AFB
Maximum Marks: 80
Time: 3 Hours

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Expand a^{x} by Maclaurin's series.
2. Write the co-ordinates of the centre of curvature of a curve $y=f(x)$ at a point $P(x, y)$
3. what is an oblique asymptotes.
4. Find the envelope of family of straight line $y=m x+a / m, m$ being the parameter.
5. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y)=y^{x}$
6. Find $\frac{d w}{d t}$ if $w=x^{2}+y^{2}, x=\cos t, y=\sin t$.
7. Explain the absolute maximum of a continuous function at a point (a, b) defined on a bounded region R.
8. The solid lies between planes perpendicular to the X -axis at $\mathrm{x}=0$ and $\mathrm{x}=4$. The cross-sections perpendicular to X -axis are squares whose diagonals run from the parabola $y=-\sqrt{x}$ to the parabola $y=\sqrt{x}$. Find the area of cross section $A(x)$.
9. Find the volume of solid of revolution generated by rotating the region between the Y -axis and graph of the function $y=x ; 0 \leq y \leq 1$ about Y -axis.
10. Write the equations for finding surface area of revolution about (i) the X -axis (ii) the Y -axis.
11. Evaluate $\iint_{R}\left(10+x^{2}+3 y^{2}\right) d A$ where $R: 0 \leq x \leq 1 ; 0 \leq y \leq 2$
12. Evaluate $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} d z d y d x$.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Obtain Taylor series expansion in powers of h for $f(x)=\cos (x+h)$
14. Find the radius of curvature of $\frac{x^{2}}{9}+\frac{y^{2}}{16}=2$ at $(3,4)$.
15. Verify that $w_{x y}=w_{y x}$ where $w=x^{2} \tan (x y)$.
16. Find all local extreme values and saddle point, if any, of the function $f(x, y)=x^{3}-y^{3}-2 x y+6$.
17. Find the volume of the solid generated by revolving the region bounded by the curves and lines $y=x^{2}, y=2-x, x=0$ for $\mathrm{x} \backslash$ geq 0 about the Y-axis using shell method.
18. Find the length of the curve $y=\int_{0}^{x} \tan t d t, 0 \leq x \leq \pi / 6$
19. Sketch the region of integration and calculate $\iint_{R} \frac{\sin x}{x} d A$ where R is the triangle in the XY-plane bounded by the X -axis and the line $y=x$ anc
20. Sketch the region bounded by the lines $x=0, y=2 x$ andadyexptess the region's area as double integral and evaluate the integral.
21. Evaluate the cylindrical coordinate integral $\int_{0}^{2 \pi} \int_{0}^{3} \int_{r^{2} / 3}^{\sqrt{18-r^{2}}} d z r d r d \theta$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Find the ranges of values x in which the curve $y=3 x^{3}-40 x^{2}+3 x-20$ are conve upwards or downwards. Also find their pointsof inflection, equation of the inflectional tangents to the curve and show that they lie on a straight line.
23. (a). If $\sin u=\frac{x+y}{\sqrt{x}+\sqrt{y}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
(b). Find the maximum and minimum values that the function $f(x, y)=3 x+4 y$ takes on the circle $x^{2}+y^{2}=1$
24. (a). Find the volume of the solid that results when the region enclosed by $y=\sqrt{x}, y=0$ and $x=9$ revolved about the line $x=9$.
(b) Find the length of the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}$ from $y=0$ to $y=1$.
(c). Find the area of the surface generated by revolving the curve $y=\sqrt{x}-\frac{1}{3} x^{3 / 2} ; 1 \leq x \leq 3$, about the X -axis.
25. (a). Evaluate $\iint_{R} e^{x^{2}+y^{2}} d A$ where R is the semi circular region bounded by the X -axis and the curve $y=\sqrt{1-x^{2}}$.
(b). Find the Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ for the transformation $u=x+y+z, v=x+y-z, w=x-y+z$.

