\qquad
Reg. No
Name \qquad

M.Sc. DEGREE (C.S.S.) EXAMINATION, APRIL 2019

Fourth Semester

Faculty of Science
Branch I (a)-Mathematics
MT0 4E 02-COMBINATORICS
(2012 Admission onwards)
Time : Three Hours
Maximum Weight : 30

Part A
 Answer any five questions from this part.
 Each question has weight 1.

1. State principle of addition and multiplication.
2. Find the number of ways to seat n married couples around a table in each of the following cases :
(a) Men and women alternate.
(b) Every women is next to her husband.
3. Show that among any group of 13 people, there must be atleast 2 whose birthdays are in the same month.
4. Show that $R(3,4) \leq 9$.
5. Show that $|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=(|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|)-(|\mathrm{A} \cap \mathrm{B}|+|\mathrm{A} \cap \mathrm{C}|+|\mathrm{B} \cap \mathrm{C}|)+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$.
6. Find the number of integers in the set $\left\{1,2, \ldots 10^{3}\right\}$ which are not divisible by 5 nor by 7 but are divisible by 3 .
7. Show that the exponential generating function for the sequence $(1,1 \cdot 3,1 \cdot 3,1 \cdot 3 \cdot 5,1 \cdot 3 \cdot 5 \cdot 7, \ldots \ldots)$ is $(1-2 x)^{-3 / 2}$.
8. Find the coefficient of x^{20} in the expansion of $\left(x^{3}+x^{4}+x^{5}+\ldots\right)^{3}$.

19001142

Part B

Answer any five questions.
Each question has weight 2.
9. Between 20,000 and 70,000 , find the number of even integers in which no digit is repeated.
10. Show that $\mathrm{S}(r, n)=\mathrm{S}(r-1, n-1)+n \mathrm{~S}(r-1, n)$ where $r, n \in \mathrm{~N}$ with $r \geq n$.
11. Define Ramsey numbers. Also show that:
(i) $\mathrm{R}(p, q)=\mathrm{R}(q, p)$.
(ii) $\mathrm{R}(1, q)=1$.
(iii) $\mathrm{R}(2, q)=q$.
12. Let $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots a_{5}\right\}$ be a set of 5 positive integers. Show that for any permutation $a_{i_{1}} a_{i_{2}} a_{i_{3}} a_{i_{4}} a_{i_{5}}$ of A, the product $\left(a_{i_{1}}-a_{1}\right)\left(a_{i_{2}}-a_{2}\right) \ldots\left(a_{i_{5}}-a_{5}\right)$ is always even.
13. Three identical black balls, four identical red balls and 5 identical white balls are to be arranged in a row. Find the number of ways that this can be done if all the balls with the same colour do not form a single block.
14. Find the number of integer solutions to the equation $x_{1}+x_{2}+x_{3}=28,3 \leq x_{1} \leq 9,0 \leq x_{2} \leq 8$, $7 \leq x_{3} \leq 17$.
15. Solve $a_{n}-4 a_{n-1}+4 a_{n-2}=0$, given that $a_{0}=\frac{-1}{4}, a_{1}=1$.
16. Find the number of ways to distribute 40 identical balls to 7 distinct boxes if box 1 must hold atleast 3 , and atmost 10 of the balls.

Part C

Answer any three questions.
Each question has weight 5 .
17. (a) Consider a collection of r objects in which r_{1} are of type I, r_{2} are of type $2 \ldots$ and r_{n} are of type n, where $r_{1}+r_{2}+\ldots+r_{n}=v$. Show that $\mathrm{P}\left(r, r_{1}, r_{2}, \ldots r_{n}\right)=\frac{r!}{r_{1}!r_{2}!\ldots r_{n}!}$.
(b) Find the number of ways to pure a 1×7 rectangle by $1 \times 1,1 \times 2$ and 1×3 blocks, assuming that blocks of the same size are indistinguishable.
18. Let ABC be an equilateral triangle and ε the set of all points contained in the three segments AB , BC, CA (including A, B and C). Show that for every partition of ε into 2 disjoint subsets, at least one of the 2 subsets contains the vertices of a right-angled triangle.
19. In how many ways can a committee of 5 be formed from a group of 11 people consisting of 4 teachers and 7 students if :
(i) There is no restriction in the selection.
(ii) The committee must include exactly 2 teachers.
(iii) The committee must include at least 3 teachers.
(iv) A particular teacher and a particular student cannot be both in the committee.
20. (a) Let S be an n-element set and let $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{q}\right\}$ be a set of q properties for elements of S . Show that for each $m=0,1,2 \ldots, q$:

$$
\mathrm{E}(m)=w(m)-\binom{m+1}{m} w(m+1)+\binom{m+2}{m} w(m+2)-\ldots+\ldots+(-1)^{q-m}\binom{q}{m} w(q)
$$

(b) Let $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots \mathrm{~A}_{q}$ be any q subsets of a finite set S , show that:
$\left|\overline{\mathrm{A}}_{1} \cap \overline{\mathrm{~A}}_{2} \ldots \cap \overline{\mathrm{~A}}_{q}\right|=|\mathrm{S}|-\sum_{i=i}^{q}\left|\mathrm{~A}_{i}\right|+\sum_{i<j}\left|\mathrm{~A}_{i} \cap \mathrm{~A}_{j}\right| \ldots+(-1)^{q}\left|\mathrm{~A}_{1} \cap \mathrm{~A}_{2} \ldots \cap \mathrm{~A} q\right| \quad$ where $\quad \overline{\mathrm{A}}_{i}$ denotes the complement of A_{i} in S .
21. Solve the recurrence relation $a_{n}-3 a_{n-1}=2-2 n^{2}$, given $a_{0}=3$.
22. If $n=P_{1}^{m_{1}} P_{2}^{m_{2}} \ldots \mathrm{P}_{k}^{m_{n}}$ be a factorization of n, prove that $\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{n}}\right)$.

