B.Sc. DEGREE (CBCS) EXAMINATION, NOVEMBER 2020

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main,B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS 93288FB8

Time: 3 Hours

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Find the locus of the middle points of a system of parallel chords of the parabola $y^{2}=4 a x$.
2. Show that for a parabola, the directrix is the polar of the focus.
3. Find the condition that the lines $1 x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$ to be conjugate with respect to the parabola $y^{2}=4 a x$.
4. Show that the locus of the mid-point of a system of parallel chords of an ellipse is a straight line passing through its centre.
5. Find a polar equation for the circle $x^{2}+(y-3)^{2}=9$.
6. Determine the equation for a line in polar coordinates when the line passes through the pole. Also give an example.
7. Prove that $\cos (x-y)=\cos x \cos y+\sin x \sin y$.
8. Prove that $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$.
9. Separate into real and imaginary parts $\tanh (\alpha+i \beta)$.
10. Find the $\mathrm{n}^{\text {th }}$ dervative of $(a x+b)^{n}$.
11. Find the $\mathrm{n}^{\text {th }}$ derivative of $\sin \mathrm{x} \cos 3 \mathrm{x}$.
12. Evaluate $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\log \left(\theta-\frac{\pi}{2}\right)}{\tan \theta}$.

Part B

Answer any six questions.
Each question carries 5 marks.
13. If $S Y$ and $S^{\prime} Y^{\prime}$ be perpendiculars from the foci upon the tangent at any point P of the ellipse, then show that Y and Y^{\prime} lie on a circle and $\mathrm{SY} . \mathrm{S}^{\prime} \mathrm{Y}^{\prime}=\mathrm{b}^{2}$.
14. Two tangents from a point to the parabola $y^{2}=4 \mathrm{ax}$ make with each other an angle 45^{0}. Prove that the locus of their point of intersection is given by $y^{2}-4 a x=(x+a)^{2}$.
15. From the points on the line $2 x-3 y+4=0$ tangents are drawn to the parabola $y^{2}=4 a x$. Show that the chord of contact passes through a fixed point.
16. Define equi-conjugate diameters. Derive the combined equation of equi-conjugate diameters of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
17. Show that the tangents at the extremities of any focal chord of a conic intersect on the corresponding directrix.
18. Sum the series $\cos \alpha+\cos (\alpha+\beta)+\frac{c^{2}}{2!} \cos (\alpha+2 \beta)+\ldots$. where c is less than unity.
19. Sum the series $\operatorname{csin}^{2} \alpha-\frac{1}{2} c^{2} \sin ^{2} 2 \alpha+\frac{1}{3} c^{3} \sin ^{2} 3 \alpha-\ldots$ where c is less than unity.
20. If $y=\left[\log \frac{x+\sqrt{x^{2}-a^{2}}}{a}\right]^{2}+k \log \left(x+\sqrt{x^{2}-a^{2}}\right)$, then prove that $\left(x^{2}-a^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=2 a$.
21. Determine $\lim (\cot x)^{\frac{1}{\log x}}, x \rightarrow 0$.

Part C

Answer any two questions.

Each question carries 15 marks.
22. Find the orthoptic locus of (a) the parabola $y^{2}=4 a x$ (b) the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (c) the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
23. A circle passing through the focus of a conic whose latus rectum is $2 l$ meets the conic in four points whose distances from the focus are r_{1}, r_{2}, r_{3} and r_{4}. Prove that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{2}{l}$.
24. Factorize the expression $x^{n}-1$
25. (a) If $x+y=1$, find the $n^{\text {th }}$ derivative of $x^{n} y^{n}$.
(b) If $y=e^{a s i n^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.
(c) If $\mathrm{y}=\left(\mathrm{x}^{2}-1\right)^{\mathrm{n}}$, prove that $\left(\mathrm{x}^{2}-1\right) \mathrm{y}_{\mathrm{n}+2}+2 \mathrm{xy} \mathrm{y}_{\mathrm{n}+1}-\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{n}}=0$.

