QP CODE: 20101175

B.Sc. DEGREE (CBCS) EXAMINATION, NOVEMBER 2020

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main,B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

93288FB8

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. Find the locus of the middle points of a system of parallel chords of the parabola $y^2 = 4ax$.
- 2. Show that for a parabola, the directrix is the polar of the focus.
- 3. Find the condition that the lines lx + my + n = 0 and $l_1x + m_1y + n_1 = 0$ to be conjugate with respect to the parabola $y^2 = 4ax$.
- 4. Show that the locus of the mid-point of a system of parallel chords of an ellipse is a straight line passing through its centre.
- 5. Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.
- 6. Determine the equation for a line in polar coordinates when the line passes through the pole. Also give an example.
- 7. Prove that $\cos(x y) = \cos x \cos y + \sin x \sin y$.
- 8. Prove that $\cosh 2x = \cosh^2 x + \sinh^2 x$.
- 9. Separate into real and imaginary parts $tanh(\alpha + i\beta)$.
- 10. Find the nth dervative of $(ax + b)^n$.
- 11. Find the nth derivative of sinxcos3x.
- 12. Evaluate $lim_{\theta \to \frac{\pi}{2}} \frac{log(\theta \frac{\pi}{2})}{tan\theta}$.

 $(10 \times 2 = 20)$

:

Name

Page 1/2

Part B

Answer any **six** questions.

- Each question carries 5 marks.
- 13. If SY and S'Y' be perpendiculars from the foci upon the tangent at any point P of the ellipse, then show that Y and Y' lie on a circle and SY.S'Y' = b^2 .
- 14. Two tangents from a point to the parabola $y^2 = 4ax$ make with each other an angle 45^0 . Prove that the locus of their point of intersection is given by $y^2 4ax = (x+a)^2$.
- 15. From the points on the line 2x 3y + 4 = 0 tangents are drawn to the parabola $y^2=4ax$. Show that the chord of contact passes through a fixed point.
- 16. Define equi-conjugate diameters. Derive the combined equation of equi-conjugate diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 17. Show that the tangents at the extremities of any focal chord of a conic intersect on the corresponding directrix.
- 18. Sum the series $cos\alpha + ccos(\alpha + \beta) + \frac{c^2}{2!}cos(\alpha + 2\beta) + \dots$ where c is less than unity.
- 19. Sum the series $csin^2\alpha \frac{1}{2}c^2sin^22\alpha + \frac{1}{3}c^3sin^23\alpha \ldots$ where c is less than unity.

20. If
$$y = [log \frac{x + \sqrt{x^2 - a^2}}{a}]^2 + klog(x + \sqrt{x^2 - a^2})$$
, then prove that $(x^2 - a^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 2a$.

21. Determine
$$lim(cotx)^{\frac{1}{logx}}, x \to 0$$
.

(6×5=30)

Part C

Answer any **two** questions.

Each question carries 15 marks.

- 22. Find the orthoptic locus of (a) the parabola $y^2 = 4ax$ (b) the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (c) the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 23. A circle passing through the focus of a conic whose latus rectum is 2*l* meets the conic in four points whose distances from the focus are r_1, r_2, r_3 and r_4 . Prove that $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} = \frac{2}{l}$.
- 24. Factorize the expression $x^n 1$
- 25. (a) If x+y=1, find the nth derivative of xⁿyⁿ.
 (b) If y = e^{asin⁻¹x}, prove that (1 − x²)y_{n+2} − (2n + 1)xy_{n+1} − (n² + a²)y_n = 0.
 (c) If y=(x² -1)ⁿ, prove that (x² -1)y_{n+2} +2xy_{n+1} -n(n+1)y_n =0.

(2×15=30)

