M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2021

Fourth Semester

Faculty of Science
Branch I (A)-Mathematics
MT 04 E01—ANALYTIC NUMBER THEORY
(2012 to 2018 Admissions-Supplementary/Mercy Chance)
Time : Three Hours
Maximum Weight : 30

Part A

Answer any five questions.
Each question has weight 1.

1. Show that Dirichlet multiplication is associative.
2. Show that if g is multiplicative, then g^{-1} is also multiplicative.
3. Show that $[x]!=_{p \leq x}^{\pi} p^{\alpha(p)}$ for every $x \geq 1$, and $\alpha(p)=\sum_{m=1}^{\infty}\left[\frac{x}{p^{m}}\right]$.
4. Show that $\psi(x)=\sum_{m \leq \log _{2} x} \mathcal{f}\left(x^{1 / m}\right)$.
5. Define Chebyshev's ψ and g functions.
6. Show that if $a \equiv b(\bmod m)$, then $(a, m)=(b, m)$.
7. If $(a, b)=d$, show that there exists integers x and y such that $a x+b y=d$.
8. Given $m \geq 1,(a, m)=1$ and $f=\exp _{m}(a)$. Show that $1, a, a^{2}, \ldots a^{f-1}$ are incongruent mod m.

$$
(5 \times 1=5)
$$

Part B

Answer any five questions.
Each question has weight 2.
9. Define the Mangoldt function $\wedge(n)$. Show that $\log n=\sum_{d / n} \wedge(d)$.
10. Show that if both g and $f * g$ are multiplicative, then f is also multiplicative.
11. Show that if $x \geq 1$ and $\alpha>0, \alpha \neq 1 \sum_{n \leq x} \sigma_{\alpha}(n)=\frac{\xi(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\beta}\right)$, where $\beta=\max \{1, \alpha\}$.
12. Show that there is a constant A such that $\sum_{p \leq x} \frac{1}{p}=\log \log x+\mathrm{A}+\mathrm{O}\left(\frac{1}{\log x}\right)$ for all $x \geq 2$.
13. Show that $a=b(\bmod m)$ if and only if a and b give the same reminder when divided by m.
14. State and prove Wolstenholme's theorem.
15. State and prove Chinese reminder theorem.
16. Let p be an odd prime and let d be any positive divisor of $p-1$. Prove that in every reduced residue system $\bmod p$ there are exactly $\phi(d)$ numbers a such that $\exp _{p}(a)=d$.

Part C

Answer any three questions.
 Each question has weight 5.

17. (a) If $x \geq 2$ show that $\log [x]!=x \log x-x+\mathrm{O}(\log x)$.
(b) For $x \geq 2$ show that $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+\mathrm{O}(x)$, where the sum is extended overall primes $\leq x$.
18. (a) Prove that two lattice point (a, b) and (m, n) are mutually visible if and only if $a-m$ and $b-n$ are relatively prime.
(b) Prove that the set of lattice points visible from the origin has density $6 / \pi^{2}$.
19. (a) For any arithmetical function $a(n)$ let $\mathrm{A}(x)=\sum_{n \leq x} a(n)$, where $\mathrm{A}(x)=0$ if $x<1$. Assume f has continuous derivative on the interval $[y, x]$, where $0<y<x$. Prove that :

$$
\sum_{y<n \leq x} a(n) f(n)=\mathrm{A}(x) f(x)-\mathrm{A}(y) f(y)-\int_{y}^{x} \mathrm{~A}(t) f^{\prime}(t) d t
$$

(b) Prove that for $n \geq 1$, the $n^{\text {th }}$ prime p_{n} satisfies $\frac{1}{6} n \log n<p_{n}<12\left(n \log n+n \log \frac{12}{e}\right)$.
20. (a) Assume $(a, m)=d$ and d / b. Prove that the linear congruence $a x \equiv(\bmod m)$ has exactly d solutions modulo m. Also obtain these solutions.
(b) Given a prime p, let $f(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$ be a polynomial of degree n with integer coefficients such that $c_{n} \neq \mathrm{O}(\bmod p)$. Prove that the polynomial congruence $f(x) \equiv \mathrm{O}(\bmod p)$ has atmost n solutions.
21. Assume $\alpha \geq 2$ and let r be a solution of the congruence $f(x) \equiv \mathrm{O}\left(\bmod p^{\alpha-1}\right)$ lying in the interval $0 \leq r<p^{\alpha-1}$.

Prove the following :
(a) If $f^{\prime}(r) \equiv 0(\bmod p)$, then r can be lifted in a unique way from $p^{\alpha-1}$ to p^{α}.
(b) If $f^{\prime}(r) \equiv 0(\bmod p)$ (i) prove that when $f(r) \equiv \mathrm{O}\left(\bmod p^{\alpha}\right), r$ can be lifted from $p^{\alpha-1}$ to p^{α} in p distinct ways.
(c) If $f(r) \equiv \mathrm{O}\left(\bmod p^{\alpha}\right)$, then r cannot be lifted from $p^{\alpha-1}$ to p^{α}.
22. Prove that for $|x|<1, \prod_{m=1}^{\infty} \frac{1}{1-x^{m}}=\sum_{n=0}^{\infty} p(n) x^{n}$, where $p(0)=1, p(n)$ denote the partition function. $(3 \times 5=15)$

